



#### H2Avia - Hydrogen in Aviation – LuFoVI.2 THE H2AVIA PROJECT - GOALS AND AIRCRAFT SYNTHESIS STRATEGY EASN CONFERENCE THESSALONIKI, GREECE 10<sup>TH</sup> OCTOBER 2024

**Fabian N. Peter**, Rafael Balderas, Marc Engelmann, Meriem Fikry, Michael Lüdemann, Adnan Muslic (Bauhaus Luftfahrt e.V.), Ralph Stephan (RWTH Aachen University), Samarth Kakkar (Technische Universität Carolo-Wilhelmina zu Braunschweig), Thomas Maibach (Hamburg University of Technology), Nicolas Moebs (University of Stuttgart)

DOI: 10.5281/zenodo.13919687



#### Content

#### H2Avia Goals

**Project Structure** 

Aircraft Synthesis Strategy

Outlook





### Goals

# H2Avia analyses hydrogen's aviation potential from fuel production, aircraft integration to global fleet carbon footprint.





# H2Avia

# Goals $\rightarrow$ KPIs

- Quantify the contribution that H2 as the main energy source in aviation can make to achieve the *climate targets*.
- Determine the cost and climate impact of H2 production and transport and its use in airport ground operations.
- Identification and modelling of critical technologies required for the introduction of H2 in civil transport aircraft (*weight, power, drag*)
- Modelling of relevant aircraft classes performance (block energy)
- Apply a global fleet model and life cycle assessment for a holistic scenario evaluation (*atmospheric temperature response*)



#### Content

#### H2Avia Goals

#### **Project Structure**

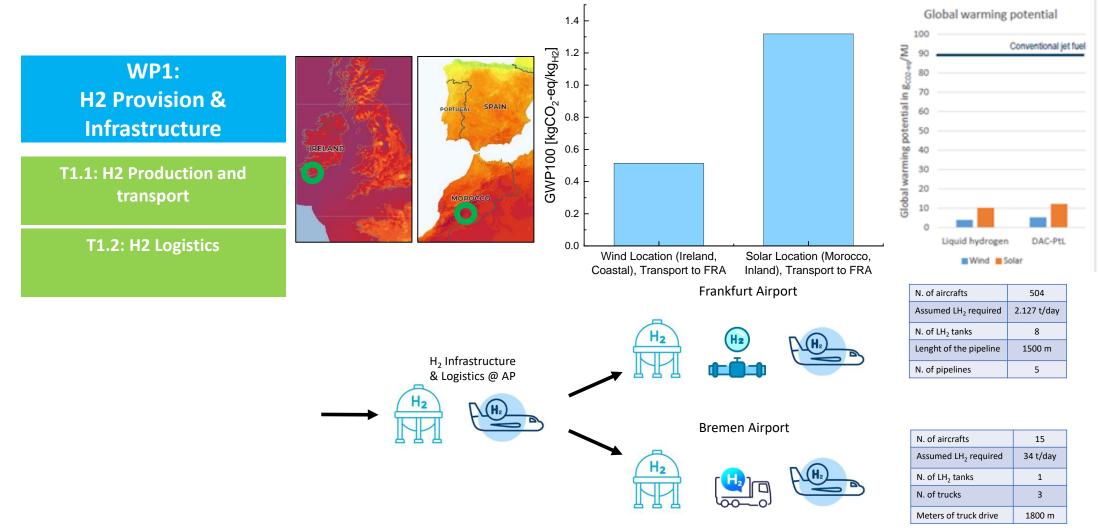
#### Aircraft Synthesis Strategy Outlook





### Project Structure

| WP1:<br>H2 Provision &<br>Infrastructure | WP2:<br>Technological blocks in<br>aircraft                  | WP3:<br>Evaluation of the overall<br>aircraft concept  | WP4:<br>Overall balance of<br>hydrogen in aviation    |
|------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| T1.1: H2 Production and<br>transport     | T2.1: Identification of relevant<br>& open technology blocks | 07                                                     |                                                       |
| T1.2: H2 Logistics                       | T2.2: Propulsion                                             | T3.2: Overall aircraft design for<br>different classes | T4.2: Investigation of non-CO <sub>2</sub><br>effects |
|                                          | T2.3: H2-supply system in the<br>aircraft                    | T3.3: Concept assessment & technology roadmap          | T4.3: H2 aviation system LCA                          |
|                                          | T2.4: Fuselage                                               |                                                        | T4.4: Overall assessment of H2<br>in aviation         |
|                                          | T2.5: Wing                                                   |                                                        |                                                       |




### Project Structure

| WP1:<br>H2 Provision &<br>Infrastructure | WP2:<br>Technological blocks in<br>aircraft | WP3:<br>Evaluation of the overall<br>aircraft concept | WP4:<br>Overall balance of<br>hydrogen in aviation |
|------------------------------------------|---------------------------------------------|-------------------------------------------------------|----------------------------------------------------|
| T1.1: H2 Production and<br>transport     |                                             |                                                       |                                                    |
| T1.2: H2 Logistics                       |                                             |                                                       |                                                    |
|                                          |                                             |                                                       |                                                    |
|                                          |                                             |                                                       |                                                    |
|                                          |                                             |                                                       |                                                    |



### WP1 results



H2Avia | Goals and Aircraft Synthesis Strategy | EASN 2024 DOI: 10.5281/zenodo.13919687



#### Content

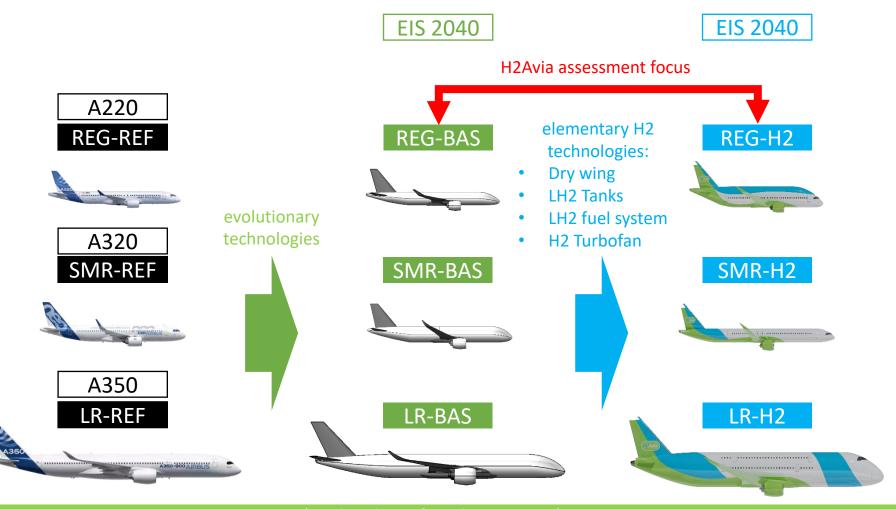
H2Avia Goals

**Project Structure** 

#### Aircraft Synthesis Strategy

Outlook

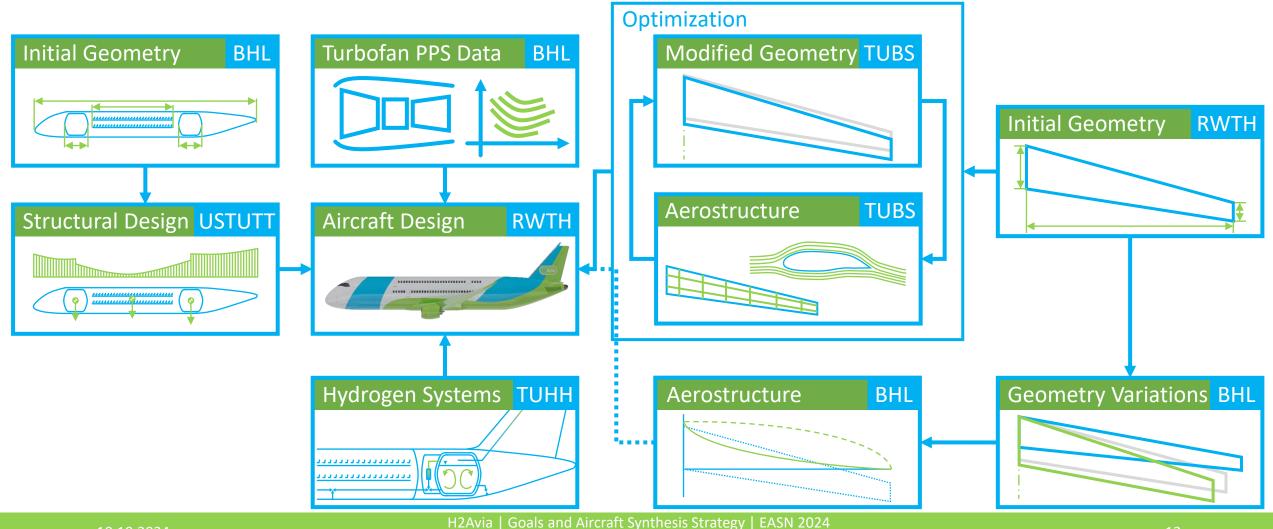





### Aircraft Synthesis Strategy

| WP1:<br>H2 Provision &<br>Infrastructure | WP2:<br>Technological blocks in<br>aircraft                  | WP3:<br>Evaluation of the overall<br>aircraft concept      | WP4:<br>Overall balance of<br>hydrogen in aviation |
|------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|
|                                          | T2.1: Identification of relevant<br>& open technology blocks | T3.1: Technology selection for the aircraft configurations |                                                    |
|                                          | T2.2: Propulsion                                             | T3.2: Overall aircraft design for different classes        |                                                    |
|                                          | T2.3: H2-supply system in the aircraft                       | T3.3: Concept assessment & technology roadmap              |                                                    |
|                                          | T2.4: Fuselage                                               |                                                            |                                                    |
|                                          | T2.5: Wing                                                   |                                                            |                                                    |




## Technology Assessment



11



### Aircraft Synthesis Strategy



12



# Tank Configuration Down-Selection

- The objective of the H2Avia tank configuration down-selection workshop was to identify **most promising tank configurations**
- Application of a 5 step approach:
  - 1. Compilation of configuration **design space**
  - 2. Definition of a comprehensive set of qualitative multi-disciplinary criteria
  - 3. Pre-selection based on preliminary partner input
  - **4. Down-selection** by candidate configurations rating against the criteria that have been tailored to appropriately resolve candidate-specific differences
  - 5. Robustness of rating decisions was gauged through systematic **permutations of criteria weightings** (scenarios)

Down selection procedure based on:

- A. Seitz, M. Nickl, A. Stroh, and P. C. Vratny, "Conceptual Study of a Mechanically Integrated Parallel-Hybrid Electric Turbofan," in 7th EASN International Conference, Warsaw, Poland, 2017.
- A. T. Isikveren et al., "Distributed propulsion and ultra-high by-pass rotor study at aircraft level," The Aeronautical Journal, vol. 119, no. 1221, pp. 1327–1376, 2015, doi: 10.1017/S0001924000011295.
- F. Mistree, K. Lewis, and L. Stonis, "Selection in the conceptual design of aircraft," in 5th Symposium on Multidisciplinary Analysis and Optimization, Panama City Beach, FL, U.S.A, 1994.



# Tank Configuration Design Space

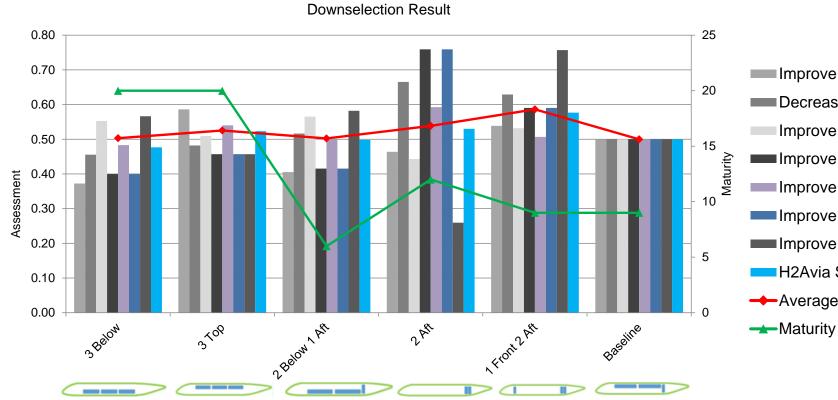
The complete tank configuration design space included these principles

- 4 types of tanks: front (of cabin), aft, top and below
- Minimum 2 tank, Maximum 4 tanks
- no more than 2 tanks front or aft, 3 for top or bottom

| front<br># | aft<br># | top #0 + below #0 | top #1 + below #1 | top #1 + below #2 | top #2 + below #1 | top #1 + below #0 | top #2 + below #0 | top #3 + below #0 | top #0 + below #1 | top #0 + below #2 | top #0 + below #3 |
|------------|----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 0          | 0        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 0          | 1        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 0          | 2        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 1          | 0        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 1          | 1        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 1          | 2        |                   |                   |                   |                   | baseline          |                   |                   |                   |                   |                   |
| 2          | 0        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 2          | 1        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 2          | 2        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |



# Tank Configuration Pre-Selection


The following common aspects were deducted from the partner input:

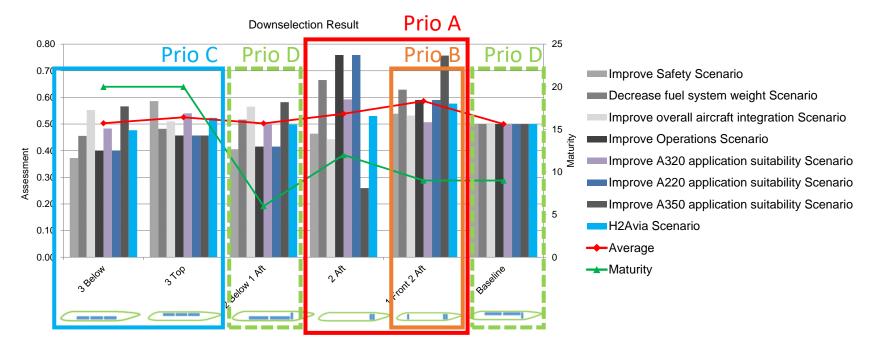
- Combination of top and bottom tanks are ruled out
- Maximum number of tanks: 3
- No single top/bottom tank (disc burst corridor  $\rightarrow$  bad CoG control + no bump)
- only 1 front, no catwalk (weight penalty); expected: autonomous/single pilot

| front<br># | aft<br># | top #0 + below #0 | top #1 + below #1 | top #1 + below #2 | top #2 + below #1 | top #1 + below #0 | top #2 + below #0 | top #3 + below #0 | top #0 + below #1 | top #0 + below #2 | top #0 + below #3 |
|------------|----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 0          | 0        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 0          | 1        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 0          | 2        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 1          | 0        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 1          | 1        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 1          | 2        |                   |                   |                   |                   | baseline          |                   |                   |                   |                   |                   |
| 2          | 0        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 2          | 1        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 2          | 2        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |



#### Down Selection Scenario Results




Improve Safety Scenario
 Decrease fuel system weight Scenario
 Improve overall aircraft integration Scenario
 Improve Operations Scenario
 Improve A320 application suitability Scenario
 Improve A220 application suitability Scenario
 Improve A350 application suitability Scenario
 H2Avia Scenario
 Average



# Selected configurations prioritization

#### • Priority A:

- A220: F0A2T0B0 AC specific points + H2Avia Scenario
- A320: F0A2T0B0
  AC specific points
  + H2Avia Scenario
- A350: F1A2T0B0
  AC specific points
  + H2Avia Scenario



- Priority B: Common configuration for all: 1 Front 2 Aft (highest average)
- Priority C: Analyze isolated effect of 3 Below and 3 Top
- Priority D: F0A1X2  $\rightarrow$  Possible best synergy; Prio C results  $\rightarrow$  top or bottom



#### Content

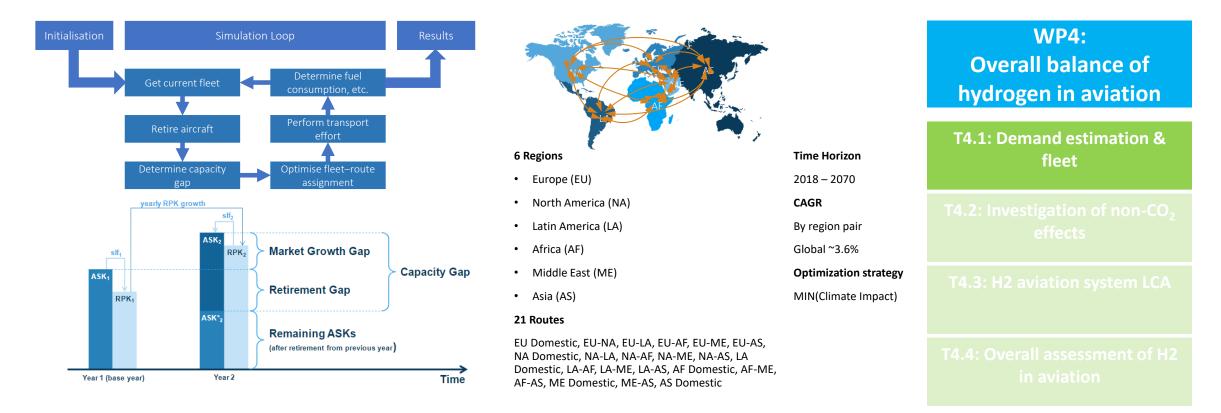
H2Avia Goals

**Project Structure** 

Aircraft Synthesis Strategy

Outlook





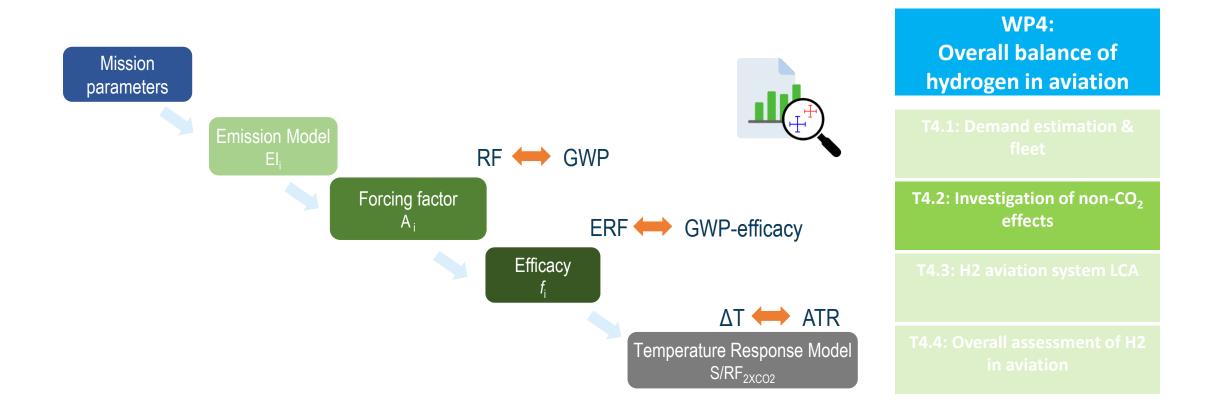

### Project Structure

| WP1:<br>H2 Provision &<br>Infrastructure | WP2:<br>Technological blocks in<br>aircraft | WP3:<br>Evaluation of the overall<br>aircraft concept | WP4:<br>Overall balance of<br>hydrogen in aviation    |
|------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
|                                          |                                             |                                                       | T4.1: Demand estimation & fleet                       |
|                                          |                                             |                                                       | T4.2: Investigation of non-CO <sub>2</sub><br>effects |
|                                          |                                             |                                                       | T4.3: H2 aviation system LCA                          |
|                                          |                                             |                                                       | T4.4: Overall assessment of H2<br>in aviation         |
|                                          |                                             |                                                       |                                                       |



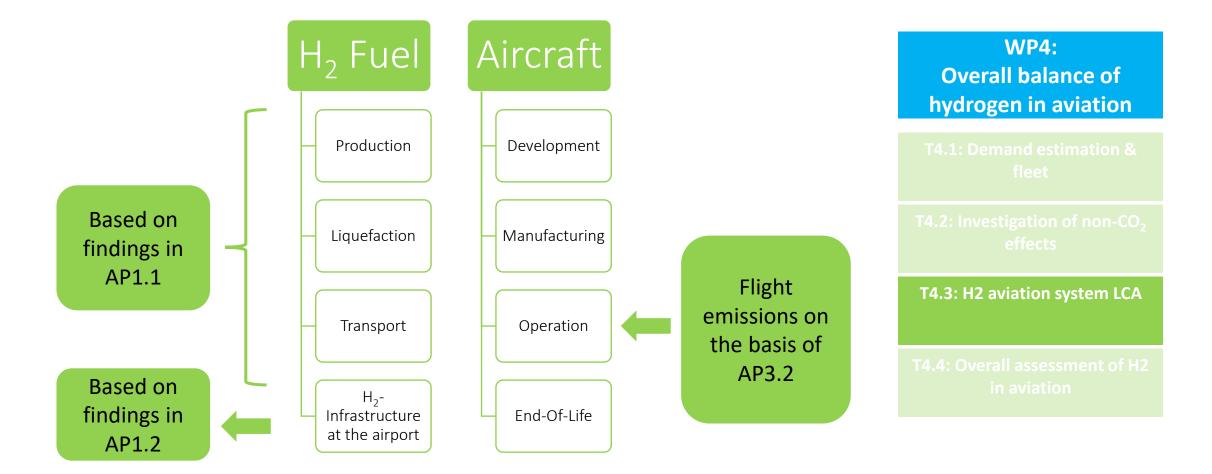
### Demand estimation & fleet




Randt, Niclas Peter (2016): Aircraft technology assessment using fleet-level metrics. Online verfügbar unter https://mediatum.ub.tum.de/1277838.

- Oguntona, Oluwaferanmi: Aircraft Fleet Renewal: Assessing Measures for Reducing CO2 Emissions. Technische Universität München. Online verfügbar unter https://mediatum.ub.tum.de/1506509.
- MINIMAL Project Report

10.10.2024




### Investigation of non-CO2 effects



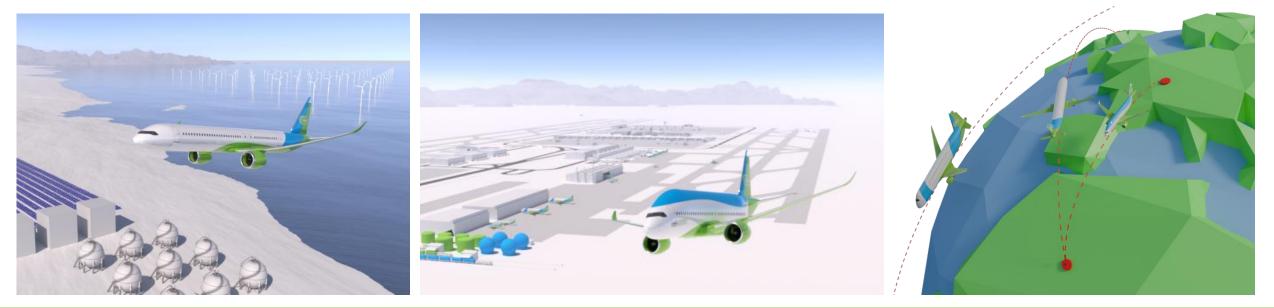



### H2 aviation system LCA





### Overall assessment of H2 in aviation




#### Conclusion

H2Avia is on track to provide an analyses of hydrogen's aviation potential from fuel production, aircraft integration to global fleet carbon footprint. Follow us on LinkedIn!



H2Avia



H2Avia | Goals and Aircraft Synthesis Strategy | EASN 2024 DOI: 10.5281/zenodo.13919687



#### Fabian N. Peter Visionary Aircraft Concepts Lead Airframe and Systems Design www.bauhaus-luftfahrt.net



#### Supported by:

Federal Ministry for Economic Affairs and Climate Action

H2Avia is a project of the federal funded aviation research program (LuFo) VI-2 FKZ 20E2106

on the basis of a decision by the German Bundestag

https://www.linkedin.com/company/h2avia/ 🛄