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While numerous Personal Air Vehicle (PAV) and next-generation Vertical Take-off and
Landing (VTOL) vehicle projects are being developed, the potential of their introduction
within an urban environment has yet to be understood and applied. Thus, an Urban Air
Mobility (UAM) extension for the transport simulation, MATSim, is being utilized on the test
case of Sioux Falls. The results provide an outlook on the transport performance of UAMwith
varying parameters. Within the limitations of the current simulation, UAM access/egress and
process times prove to be highly influential on passenger adoption.

Nomenclature

PAV = Personal Air Vehicle
UAM = Urban Air Mobility
VTOL = Vertical Take-off and Landing

I. Introduction

Recent developments in electric propulsion and battery technology enable new areas of operation for air vehicles.
Quieter operations and shorter mission ranges facilitate air vehicles’ urban application. Increasing urbanization and

population growth induce a rising transportation demand, thus, especially during peak-hours, a high willingness-to-pay
for further time-efficient mobility alternatives is to be assumed. The recent concept of Urban Air Mobility (UAM), i.e.
the utilization of next-generation Vertical Take-off and Landing (VTOL) vehicles or Personal Air Vehicle (PAV) in
urban environments, could add additional transport supply into urban settings.

Current developments show a multitude of companies that advance the evolution of next-gen VTOL vehicles [1].
UAM, however, consists of more than the vehicles by themselves and requires an operational concept and infrastructure
that allows for VTOL vehicle integration within existing urban transportation systems. The operational performance of
a potential UAM implementation is to be analyzed using a self-developed extension [2] for the multi-agent transport
simulation tool, MATSim [3], applied on an advancement of the prototype and research oriented MATSim scenario of
Sioux Falls by Hörl [4].
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II. Literature Review
Diverse aspects of UAM are currently being analyzed. UBER [5] published a White-paper in 2016 stating their

take and view on UAM. Herein, urban air traffic management, noise, pollution, system reliability, and safety are
being discussed. NASA published their strategy paper concerning regulatory steps in 2017 [6]. It is not yet clear,
however, which business models will be dominant for UAM introduction and which ownership structures occur. Often,
next-generation VTOL vehicles are regarded as parts of on-demand air mobility services with commercially-owned
vehicles [7, 8]. The business model in this case would be rather similar to that of a car-sharing provider. In contrast,
Nneji et al. [9] compare different concepts by distinguishing various ownership options (professional operator or
self-operated) and operational models (centralized, decentralized, and self-owned ownership structures).

Additionally, VTOL projects demonstrate a broad spread in intended mission rang, utilized technologies for
generating VTOL capabilities, as well as other VTOL vehicle properties, such as cruise speed and passenger capacity as
is being outlined by Shamiyeh et al. [1]. Cruise speeds, for example, range from 50 to 630 km/h for the listed VTOL
vehicle, while passenger capacity ranges from one to six seats [1, p. 18]. While various VTOL vehicle concepts are
being developed, no convergence towards a specific vehicle morphology can be identified, with some projects relying
on rotor-based cruise and while others use wings for lift generation during cruise flight with additional propulsion or
technologies to also allow for VTOL. While some projects, as listed by Shamiyeh et al. [1] have published some of their
VTOL vehicle’s performances claims, the claims have yet to be verified–either by VTOL demonstrations or by in-depth
VTOL vehicle performance modeling. Modeling UAM, thus, also requires modeling and simulating variations in UAM
vehicle parameters.

UAM integration approaches–into existing urban transportation systems–will also vary substantially depending
on the potential need for VTOL infrastructure, as will the system’s overall performance. Besides vehicle speed and
capacity, UAM’s system performance, also greatly depends on accessibility and, with that, on, for example, access
times, access point distribution, and ease and speed of inter-modal transfer. In order to simulate the introduction of
UAM into urban environments, an initial version of a UAM extension [2] for MATSim [3] has been developed.

In MATSim, a synthetic population is generated and represented by agents. Agents perform various activities during
the day and, thus, generate transport demand. MATSim is based on an activity-based approach, which strongly focuses
on people’s behavior and the location of their activities. The utility of various activities and their respective dis-utility,
e.g. for traveling to the location of a specific activity, is measured in a scoring function. Agents try to maximize their
score by changing their travel behavior, their activity order, or the activities’ starting times until an optimal allocation is
reached, as described by Kai et al. [10]. MATSim has been used for a broad range of analyses, such as for the simulation
of autonomous cars [11], policy evaluation [12], land-use analyses [13], and traffic signal analyses [14]. The most
closely related to the application of MATSim for UAM, is an analysis of autonomous taxis by Hörl [15]. In order to
assign a vehicle to an agent’s travel request, they utilized the Dynamic Vehicle Routing Problem (DVRP) contribution
by Maciejewski [16]. On this basis, the UAM extension [2] for MATSim has been developed and applied.

As a prototype use case, the city Sioux Falls is to be analyzed for its potential for UAM integration. Sioux Falls has
been chosen as it is the default test-case for MATSim and widely used for demonstration in transport literature [4],
providing, both, road and public transport networks, combined with “fully dynamic demand fitted with realistic
socio-economic and demographic attributes”, according to Hörl [4].

Fig. 1 illustrates the study area to which the Sioux Falls MATSim scenario has been confined to by Hörl [4]. Besides
the road network, the Sioux Falls scenario also provides a public transport network and schedule, realistic home and
work facility locations [4, p. 15]. It is important to note that the Sioux Falls scenario is not "intended to be accurate and
realistic with respect to the actual City of Sioux Falls" [4, p. 15]–yet, is intended as a test and prototyping scenario. As
such, the synthetic population of the Sioux Falls scenario provides simplified daily plans for the virtual city’s population,
e.g. plans only consisting of commuting to and from work, without more complex day plans or agent’s arriving in or
leaving the study area via long-distance travel, e.g. via the airport. Still, the Sioux Falls scenario provides a suitable and
computational manageable test bed for UAM integration.

This initial analysis of UAM integration in Sioux Falls will be performed under restricted options for integration and
is intended to provide a basis for future, comparative studies. For example, it is currently assumed that UAM will first
be realized by providing an on-demand travel model, rather than private operation or public, scheduled transport service
models. Further, transport mode choice is simplified to rely solely on agent’s value of time, disregarding personal
preferences and, possibly, reservations towards an intra-city airborne transport mode. While first research towards travel
preferences including UAM are currently being conducted (see [17] and [18, p. 2]), it has not yet been included in UAM
simulation.
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Fig. 1 Map of Sioux Falls MATSim scenario from Hörl [4, p. 16]
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III. Methodology
The Sioux Falls MATSim scenario by Hörl [4] has been extended to enable UAM integration by adding UAM

networks, UAM vehicles, and UAM configuration parameters–such as process times and available UAM station
access/egress transport modes. A baseline scenario has been defined and serves as point of reference for subsequent
scenarios with single parameter variations. For each subsequent scenario a single parameter, such as UAM vehicle
cruising speed, has been changed without changing the remaining variables–ceteris paribus. The resulting multitude of
scenarios have been simulated simultaneously on dedicated computational server in accordance to Horni and Nagel [19,
p. 37].

A. Baseline Scenario
For the baseline scenario, a UAM network for Sioux Falls had to be established. It has to be noted that, as with the

Sioux Falls MATSim scenario, this baseline scenario merely aims at being reasonable rather than realistic, as to allow for
initial sensitivity analyses rather than provide recommendation on actual UAM realization. As there is no aerial network
currently available for potential UAM networks in Sioux Falls, a potential one has been created by consulting Fadhil [20]
and following his approach of identifying potential UAM infrastructure locations using geographic distributions and
information. Further, Rodrigue et al. [21, pp. 180] has been consulted in setting up an initial UAM network for Sioux
Falls.

(a) Transport nodes (b) Points of interest (c) Existing helipads (d) UAM station placement

Fig. 2 Maps of Sioux Falls depicting the attractiveness for UAM Station placement based on different factors

Fig. 2 illustrates the various geographic information that has been utilized to place the initial UAM stations for
the baseline scenario. Fig. 2a illustrates attractive positions for UAM stations based on existing large-scale transport
infrastructure, retrieved via OpenStreetMap. In the case of Sioux Falls, Fig. 2a depicts the Sioux Falls Regional Airport
as the sole large-scale transport infrastructure. Fig. 2b, on the other hand, illustrates the attractiveness for UAM stations
based on local points of interest or common tourist destinations derived by gathering the locations of main tourist
attractions from online tourist rating and information websites such as TripAdvisor. Fig. 2c depicts existing helipads
within the study area, also retrieved via OpenStreetMap. Finally, Fig. 2d shows a combined map of Sioux Falls, with the
previous three maps being superimposed and the chosen UAM stations marked as black-crossed, white-filled circles.
For the initial baseline scenario, ten stations have been placed around transport nodes, points of interest, and existing
helipads in order to achieve a potentially realistic UAM integration scenario. Fig. 3a shows the final placement of the
UAM stations within the city of Sioux Falls.

For the baseline scenario, all UAM stations have been directly connected via aerial routes to each other station,
resulting in the UAM network as depicted in Fig. 3b. Further, the aerial network is not capacity restricted. While
throughput restrictions can be modeled, airspace capacity remains unlimited for this early investigation. Thus, vertical
and horizontal separation of UAM vehicles have not been taken into account. The UAM network’s flight level for cruise,
however, is taken into account and has initially been set to 500 meters, after consulting minimum safe altitudes [22] for
urban areas and adding a 50% additional safety buffer. UAM vehicles have to ascent to and descent from that flight level
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(a) UAM station placement (b) UAM network structure

Fig. 3 Baseline scenario UAM station placement and network structure

for take-off and landing.
Further, for the baseline scenario, the UAM fleet consists of 100 UAM vehicles that have been evenly distributed

across the ten, defined UAM stations at the start of the simulation. Thus, each station provides an initial vehicle pool of
ten vehicles. Unfortunately, there is insufficient existent research for the provision of expected UAM fleet sizes, thus,
the baseline scenario UAM fleet definition has been based solely on expert judgment. During simulation, the UAM
vehicles are dynamically being distributed according to passenger requests. Thus, vacant UAM vehicles are being routed
autonomously to a passenger approaching a UAM station which does not have a vacant UAM vehicle ready for the
requesting passenger.

All scenarios, presented in this study, use homogeneous UAM fleets, i.e. use vehicles with the same attributes.
These attributes, however, have been varied as well. Thus, for the baseline scenario, the UAM fleet consists of vehicles
with a cruising speed of 150 km/h and vertical take-off and landing speed of 10 m/s. Again, due to little existing research,
these speeds have been set based on expert judgment while consulting Shamiyeh et al. [1]. Additionally, parameters
have been fixed for the baseline scenario, such as the price of using UAM with three times the car price that had been
defined within the Sioux Falls MATSim scenario, maximum UAM station access/egress distance of 5 km, and total
ground-based UAM process time of 2.5 minutes. The definition of ground-based UAM process time has intentionally
been left vague as there is no consensus on which processes will be part of the pre-flight passenger operation. Thus, the
ground-based UAM process time could potentially include processes such as elevator usage, security screening, and/or
vehicle boarding. Finally, UAM access/egress options have been set to all available transport modes from the original
Sioux Falls MATSim scenario, i.e. walking, driving, and using public transport.

B. Parameter Variations
After the baseline scenario had been defined, variation scenarios have been derived by selecting and alternating

a single scenario parameter. The following parameters have been selected and alternated (baseline values added in
parentheses):

• UAM vehicle cruising speed [km/h]: 50, (150), 250, 350, 450
• UAM vehicle VTOL speed [m/s]: 5, (10), 20
• Ground-based UAM process time [min]: 0.5, (2.5), 5, 10, 15, 20
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• UAM vehicle passenger capacity [# of seats]: 1, (2), 4, 8, 12
• UAM fleet size [# of UAM vehicles]: 50, (100), 300
• UAM network [# of UAM stations]: 4, (10)

In its current implementation, variations of UAM vehicle VTOL speed can be equated with variations in UAM
network flight levels. Thus, the above-listed VTOL speeds of 5, 10, and 20 m/s can be compared to equivalent flight
level variations of 250, 500, and 1000 m. Further, it has to be noted that UAM passengers always had a pre-defined price
that remains unchanged throughout these scenario variations and also remains the same in case of passenger pooling, i.e.
multiple passengers using the same UAM vehicle simultaneously. While pricing structures in relation to passenger
pooling is expected to have significant influence on UAM passenger adoption (c.f. [5]), the used UAM extension version
does not currently provide the ability to differentiate pricing based on pooled flights. Additionally, passenger pooling is
currently implemented to allow multiple passengers with identical origin and destination UAM stations to share their
UAM vehicle–en-route drop-off or hop-on of additional passengers is not yet included.

IV. Results and Discussion
Each of the above-listed variations resulted in its own MATSim scenario and has completed its own simulation run,

each with a multitude of iterations. In the following, each group of scenario, grouped by which parameter (e.g. cruise
speed) had been changed in comparison to the baseline scenario, is presented separately.

A. UAM Baseline Results
The baseline scenario, and all subsequent variation scenarios, use the Sioux Falls MATSim scenario’s population [4]

and leaves it unchanged, which provides 84,110 agents. This synthetic population represents a 48% sample of Sioux
Falls’ current, actual population of 174,360 [23]. After the simulation, 3,693 out of the 84,110 agents used UAM for at
least one trip during their simulated day, resulting in 6,179 UAM flights with 6,810 UAM passengers in total. The
modal share of UAM yields 4%, whereas the majority of agent’s still chose their car (74%), used public transport (18%),
or decided to walk (5%) instead.

(a) Cumulative duration distribution [min] (b) Cumulative distance distribution [km]

Fig. 4 Cumulative distributions of travel and flight times and distances of UAM-involving trips

Figures 4a and 4b illustrate the distribution of UAM flights in terms of times and distances, respectively. Figure 4a,
for which all leg and trip duration have been clustered into 5 minute intervals, illustrates the cumulative distribution of
times for:

• Access leg duration: Time duration between agent’s departure of origin location until arrival at chosen departure
UAM station.

• UAM leg duration: Time duration from entering the departure UAM station until leaving the destination UAM
station, including all UAM processes, such as boarding or vehicle distribution to the waiting agent/passenger.

• Egress leg duration: Time duration between agent’s departure of destination UAM station until arrival at final
destination location.
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• Total trip duration: Time duration between agent’s departure of origin location until arrival at final destination
location.

For access leg duration, 72% are below 30 minutes. However, a large share (28%) surpass the 30, 60, and even 270
minute mark for their UAM access leg. The average access leg duration yields M=71 (SD=144) minutes. An initial
analysis shows that the, partly, very long access leg times all stem from the UAM station in the central business district
of Sioux Falls and are access legs that use public transport exclusively. While, as mentioned, UAM station capacity is
not limited, the common public transport network is. The high access times for some UAM passengers might be a result
of public transport providing insufficient throughput for the high demand at that specific UAM station. The influence of
long access legs carriers over to the total trip duration which averages M=101 (SD=141) minutes, where the majority
(65%) of trips range between 0 and 60 minutes. For egress legs, 96% are below 30 minutes with an average egress
duration of M=10 (SD=9) minutes. For UAM leg duration, which includes all required flight activities as well as, e.g.,
boarding, 51% are shorter than 10 minutes–though the minimum UAM leg duration is 8 minutes. All UAM legs are
shorter than 60 minutes–averaging a UAM leg duration of M=20 (SD=13) minutes.

Figure 4b, for which all leg and trip distances have been clustered into 0.5 km intervals, illustrates the cumulative
distribution of beeline distances, i.e. the length of a straight line between two points, for:

• Access leg distance: Beeline distance between agent’s origin location and chosen departure UAM station.
• UAM leg distance: Beeline distance between origin and destination UAM stations.
• Egress leg distance: Beeline distance between agent’s destination UAM station and final destination location.
• Total trip distance: Sum of beeline distances for an agent’s access, UAM, and egress leg.
• Direct distance: Beeline distance between agent’s origin location and final destination location.

For access leg distance, 66% are below 2 km, yielding an average access distance of M=1.6 (SD=1.3) km. The
average UAM leg distance or flight distance resulted in M=3.7 (SD=1.6) km with flight distances ranging from 2.2 to
11.7 km. While most flights (76%) had a range of up to 5 km, it has to be noted that the flight distances heavily rely
on the size of the study area and the distribution of UAM stations. A similar influence can be found for access and
egress distances, as these are also dependent on the number and distribution of UAM stations throughout the study area.
Correctly, do egress leg distance, which averages M=1.9 (SD=1.1) km, exceeds the 5 km mark–which has been set
as the maximum search radius for suitable UAM stations for access and egress legs. The total trip distances average
M=7.2 (SD=2.5) km with most trip lengths (55%) being less than 7 km. In many cases, the direct distance (M=3.5 km,
SD=1.6 km) is actually shorter than the UAM leg/flight distance, which results on a detour factor for UAM-involving
trips of M=2.4 (SD=1.3). It has to be noted, though, that this detour factor is based on beeline distances–for road usage,
detour also exists between agents’ origins and destinations based on the road or public transport network. An earlier
investigation on road infrastructure in larger European cities found an average detour factor of 1.6 for driving and 2.1 for
public transport [24, p. 11].

Fig. 5 Distribution of UAM departures and arrivals throughout the simulated day in 15 min intervals
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Figure 5 illustrates the number of UAM vehicle departures and arrivals per 15 minute slots throughout the simulated
day. The morning peak, between 06:45 and 08:30, shows a particular concentration of UAM departures and, subsequently,
arrivals within a short period of time. During the busiest time interval from 07:00 to 07:15, 508 UAM vehicle depart
the UAM stations, which–as of yet–are not restricted in their capacity. Medium transport demand can be observed
throughout the day until the evening peak, between 15:00 and 18:30, results in an increase in UAM usage. Finally, a
third peak for late-evening activities, between 18:30 and 22:00 concludes the simulated day.

Table 1 Percentages of passengers’ access/egress mode choices for UAM-involving trips

Access and egress mode(s) Passengers
PT–Car / Car–PT 57%
Walk–Car / Car–Walk 17%
Walk–PT / PT–Walk 13%
Car 9%
Walk 3%
PT <1%

Table 1 shows the percentages of transport modes, chosen by UAM passengers, for UAM station access and egress.
Most passengers combine the use of public transport with the usage of a car for either access or egress. It has to be
noted though, that–currently–no penalty, i.e. disutility, is given for changing one’s mode in combination with using
UAM. Including the dislike of passengers for mode changes might affect the listed modal shares for access and egress,
as most passengers (87%) chose to combine two different transport modes for UAM access and egress.

B. UAM Vehicle Cruising Speed Variation
Different scenarios have been simulated for the cruise speed alterations of 50, 250, 350, 450 km/h cruising speed,

with 150 km/h being the cruise speed of all UAM vehicles in the baseline scenario. For a cruise speed of 50 km/h,
the average UAM leg duration increased by 29% compared to the baseline scenario and yielded an average of M=25
(SD=15) minutes. Increasing the cruise speed to 250 km/h reduced the average UAM leg duration to M=19 (SD=14)
minutes, a decrease of 5%. Further cruise speed increases resulted in an average of M=18 (SD=13) minutes and, thus, a
8% decrease for a cruise speed of 350 km/h. The average UAM leg duration decreases by 11% for cruise speeds of 450
km/h (M=18 km/h, SD=13 km/h). The effect of faster cruise speeds diminishes as the proportion cruise flight duration,
which is part of the UAM leg duration, becomes smaller, while the UAM process times remain constant.

(a) Influence of cruise speed variation (b) Influence of vertical speed variation

Fig. 6 Influence of UAM vehicle speed variations on passenger number compared to baseline

Figure 6a illustrates the effect of varying UAM vehicle cruise speeds on overall UAM passenger numbers compared
to the passenger number of the baseline scenario. The 29% increase of average UAM leg duration with 50 km/h cruising
speed results in a 33% decrease in passenger numbers, whereas the 11% increase in cruise speed (450 km/h) results in a
12% increase in passenger numbers.
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C. UAM Vehicle VTOL Speed Variation
For vertical speed variations, two alternations have been simulated: 5 and 20 m/s vertical flight speed, with 10 m/s

being the baseline scenario setting. The UAM leg duration, with 5 m/s vertical speed, increased by 14% to M=23
(SD=13) minutes and results in a 17% reduction in passenger numbers. For 20 m/s vertical speed, the average UAM leg
duration decreases by 8% and averages M=18 (SD=13) minutes. The 8% reduction in UAM leg duration results in a 9%
passenger number increase, as illustrated by Fig. 6b.

D. UAM Process Time Variation
For UAM process times, which encompasses the duration of an agent’s arrival at a UAM station until take-off (and

vice versa), five alternative scenarios have been simulated. Thus, this process might include elevator rides, buffer
times, security processes, as well as boarding. The UAM process times have been simulated for 0.5, 5, 10, 15, and 20
minutes. The baseline scenario is defined with a 2.5 minute duration per UAM process, which occurs twice during each
UAM-involving trip: once each at the origin and destination UAM stations.

(a) Influence of UAM process time variation (b) Influence of UAM vehicle capacity variation

Fig. 7 Influence of UAM process time/vehicle capacity variations on passenger number compared to baseline

Figure 7a illustrates the effect of alternating UAM process times on overall UAM passenger numbers. Increasing the
UAM process time to 20 minutes each, results in an average UAM leg trip duration of M=45 (SD=3) minutes (127%
increase) and yields a 99% decrease in UAM passenger numbers. UAM process times of 15 minutes each, still yields a
92% decrease in passengers with average UAM leg duration of M=36 (SD=5) minutes (84% increase). UAM process
times of 10 minutes still increase the average UAM leg duration by 56% (M=31 min, SD=9 min) and results in a 74%
reduction in passenger numbers. Still, UAM process times of 5 minutes result in a 34% reduction in UAM passengers
with an average UAM leg duration of M=27 (SD=19) minutes (38% increase). Finally, by cutting the UAM process
time in half, i.e. setting UAM process times to 0.5 minutes each, the UAM passenger numbers increase by 38% with an
average UAM leg duration of M=12 (SD=10) minutes (39% decrease).

It seems that UAM process times have a more severe effect on UAM adoption than UAM vehicle cruising or VTOL
speeds. For an exemplary UAM trip of 15 km flight length, an increase of UAM process time from 2.5 to 5 minutes
(100% increase) at each UAM station would have to be compensated by UAM vehicle cruising speeds of 900 km/h
(500% increase) in order to maintain the UAM leg duration of 11 minutes. For UAM flight distances of less than 12
km, the time penalty of 5 minutes UAM process times could not be compensated by cruising speed at all. It is, thus,
recommended for UAM stakeholders to focus on UAM process and access/egress times rather than purely on UAM
vehicle speeds.

E. UAM Vehicle Passenger Capacity Variation
The baseline UAM vehicle capacity of two seats per UAM vehicle has been altered to one, four, eight, and twelve

seats per vehicle in passenger capacity variation scenarios. For a UAM fleet with only one seat, the average UAM leg
duration increased by 19% to M=23 (SD=15) minutes and resulted in a 36% decrease in overall passenger numbers.
Even though agents do not have to wait for additional passengers to board their shared UAM vehicle, the average UAM
leg duration increases with the reduction of passenger capacity as the transport performance of the remaining fleet has
effectively been halved as no additional vehicle have been added as compensation. Thus, passengers had to wait longer
than in the baseline scenario until their assigned UAM vehicle became available and reached the agent’s departure UAM
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station. Increasing the capacity from two to four passengers reduced the UAM leg duration by 19% (M=16 min, SD=9
min) and resulted in a 23% increase in overall UAM passenger numbers. Increasing the capacity even further, into
the realms of flying mini-buses, to seat eight passengers led to a 33% increase in passenger numbers compared to the
baseline scenario and a 22% reduction in UAM leg duration (M=15 min, SD=8 min). Finally, increasing the capacity to
twelve seats increased the passenger numbers by 36% and decreased the average UAM leg duration by 23% (M=15 min,
SD=8 min). Figure 7b illustrates the effects of varying the UAM vehicle passenger capacity on passenger numbers.

Table 2 Percentages of flights per number of passengers for each capacity scenario

Passengers One-seater Two-seater Four-seater Eight-seater Twelve-seater
1 100.00% 89.79% 80.99% 78.57% 78.10%
2 10.21% 14.56% 13.92% 14.24%
3 3.58% 4.60% 4.44%
4 0.88% 1.81% 1.69%
5 0.76% 0.65%
6 0.29% 0.51%
7 0.04% 0.22%
8 0.06%
9 0.06%
10 0.01%
11 0.01%
12

Table 2 displays the percentages of UAM flights by seat load factor, i.e. the number of passengers during a flight, for
each of the before-mentioned capacity variation scenarios. It is important to note that these percentages are heavily
dependent on the implementation and calibration of the simulated scenario and do not present a seat load factor forecast.
However, regardless of UAM vehicle capacity, most flights transport sole passengers throughout all capacity variation
scenarios: 78% to 90% are single-passenger flights, in cases where UAM vehicle offered at least two seats. With 14% to
15%, flights with two passengers are the second most common passenger constellation. Interestingly, in the passenger
capacity scenarios of eight- and twelve-seater UAM vehicles, no flight ever made use of the complete vehicle passenger
capacity.

The current pooling implementation, though, is rather simplistic in that passenger with identical origin and destination
UAM station are being pooled if they wish to depart within a similar timeframe, i.e. during the access leg duration of
the other passengers. Currently, all agents pay the same price for UAM transport, regardless of whether or not they have
been in a shared vehicle. With the introduction of price differentiation and more elaborate pooling algorithms, one
that–e.g.–allows for en-route drop-off and pick-up of additional passengers, these vehicle occupations are expected to
change significantly.

F. UAM Vehicle Fleet Variation
While the baseline scenario provides a UAM vehicle fleet of 100 vehicles in total, two alterations have been simulated

with 50 and 300 UAM vehicles. The reduction of the UAM fleet to 50 vehicles led to a 69% increase in UAM leg
duration (M=33 min, SD=40 min) and a 61% reduction in passenger numbers, as agents had to wait an extended period
of time for their assigned UAM vehicle. Increasing the fleet size, though, from 100 to 300 vehicles increased overall
passenger numbers by 46% as UAM leg duration decreased by 43% (M=11 min, SD=5 min). It is, thus, evident that
UAM vehicle availability and its effects on UAM trip duration has an impact on UAM adoption. Without UAM fleet
cost, however, trade-offs analyses of fleet size versus fleet cost are not feasible at this early stage of UAM modeling.

G. UAM Network Structure Variation
As mentioned in Sec. IV.A, the number and placement of UAM infrastructure is elemental for UAM adoption and,

subsequently, heavily influences the UAM passenger numbers. In order to illustrate the effect of network/placement
changes, an alternate scenario with four UAM stations has been simulated. The resulting, different network structures
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are displayed in Fig. 8. Additionally, Figures 8a and 8b indicate the aerial routes’ usages by varying the line thickness of
different routes. Bolder lines indicate more UAM flights within the simulated day.

(a) Baseline network (ten UAM stations) (b) Reduced network (four UAM stations)

Fig. 8 Network usage (line thickness) comparison between baseline and reduced network

The reduction in number of UAM stations resulted in a 55% decrease in passenger numbers, as a large part of the
simulated population remained outside the 5 km radius around each station for which UAM access/egress had been set
to be feasible. Still, even without the 5 km radius limitation, the access and egress leg times would increase with the
removal of UAM stations.

Future analyses with artificial grids of UAM stations could be used to identify areas with high UAM demand.
Simulations could then be rerun with UAM stations placed within the identified high demand areas. This approach
could be combined, in an iterative process, with the methodology presented by Fadhil [20] in order to optimize UAM
infrastructure placement.

V. Conclusion
The presented results of the Sioux Falls use case for the MATSim UAM extension prototype gives first indications

of the influence of UAM parameters on UAM transport performance and provides an initial basis for further UAM
transport research. UAM adoption is strongly influenced by the potential travel time reduction perceived by potential
passengers. The results show that UAM infrastructure and ground-based UAM processes have elemental influence on
UAM leg trip duration and, thus, on passenger adoption. The industry’s current focus on UAM vehicle capacity and
speeds should be extended with UAM accessibility and short process times.

Future research in the field of potential transport performances of UAM should also implement UAM pricing differ-
entiation and additional UAM vehicle parameters, such as maximum range and the requirement for charging/refueling.
Lastly, future studies should be applied to study areas which aim to realistically represent the simulated population and
city, as this Sioux Falls scenario remains a prototyping case.
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