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ABSTRACT 

Predictive maintenance approaches leveraging integrated 

knowledge, fleet-wide data and machine-learning techniques 

allow for earlier warnings on impeding failures and for higher 

accuracy in remaining useful life predictions compared with 

traditional maintenance strategies. However, in case relative 

to correctly predicted maintenance needs, missed detections 

or false alarms occur too often, benefits can be outweighed 

by follow-up costs due to unexpected damage or unnecessary 

inspections. For business case evaluation, we demonstrate the 

value of a general approach to cost-benefit analysis based on 

the Receiver Operating Characteristics (ROC) curve. It 

allows for deducing application-specific requirements on 

prediction quality for achieving a net benefit and for 

comparing and optimizing failure prediction algorithms 

regarding cost-efficiency. As example of use, the approach is 

applied within aircraft engine maintenance to assess 

potentials for reducing unscheduled engine removals by more 

accurate prediction of turbine blade failures. Based on 

realistic, literature-based assumptions on various costs, 

failure probability and algorithm performance, cost-saving 

potentials are found of up to about 32 Mio. $ for a Lufthansa-

sized widebody fleet (i.e. roughly 1 Bio. $ for the global 

widebody fleet) at mean-time between engine removals. The 

machine-learning based fusion of a pure physics-of-failure 

model with relevant data, e.g. pertaining to environment and 

inspection, is shown to allow for an up to 63% higher cost 

benefit, demonstrating the value of data for predictive 

maintenance purposes. Generalizations of the presented 

approach, e.g. to cost-optimize engine workscope planning or 

other system maintenance, are discussed. 

1. INTRODUCTION 

One of the general expectations of Prognostics and Health 

Management is the translation of raw data related to the 

health state of engineering systems into actionable 

information to facilitate rapid and informed maintenance 

decision making.  

Within the last decades, several new methods for prognostics 

and for assessing the performance of predictions for health 

management have been developed (Saxena, Sankararaman, 

& Goebel, 2014). Lately, e.g. in aeronautics, approaches are 

investigated that leverage integrated knowledge and fleet-

wide data of various sources to reduce uncertainties related 

to modeling of systems, and the impacts of usage profiles, 

operating environments and Maintenance, Repair and 

Overhaul (MRO) actions such as on asset health state, 

degradation rate and performance. Capturing complex 

relationships in the data that may be difficult to describe 

using physics, allows for earlier warnings on impeding 

failures and for higher accuracy in remaining useful life 

predictions (Saxena et al., 2014; Wagner, Saalmann, & 

Hellingrath, 2016).  

Yet, not all use cases are economically favorable for 

approaches relying on predictive analytics. Qualification 

criteria of business problems involve sufficient high-quality 

data and business needs, the latter arising from a significant 

influence of particular failure modes of components or (sub) 

systems of an asset on reliability, availability, installation or 

maintenance effort or operational costs. Moreover, 

importantly, for achieving a net average benefit compared to 

conventional strategies like preventive maintenance, 

application-specific requirements on predictive algorithm 

performance as well as on maximally allowed overhead costs 

such as for development, implementation and maintenance of 

the predictive analytics solution arise that have to be met for 

economic viability.  

As key performance measure of predictive algorithms, the 

Receiver Operating Characteristics (ROC) curve, discussed 

in more detail in the next section, indicates all possible 

combinations of relative occurrences of various kinds of 

correct and incorrect predictions (Metz, 2018). It can be 

directly linked to cost-benefit analysis of diagnostics- / 

prognostics-based decision-making, allowing for 

determining the optimal compromise among various kinds of 

prediction errors and finally, for business case identification. 

While ROC curves provide a common basis to medical 

decision making (Metz, 2018), and in recent years have been 

increasingly adopted in the machine learning and data mining 
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research communities, their natural relation to cost-benefit 

analysis is not commonly exploited for business case 

evaluation with regards to predictive maintenance potentials 

in engineering disciplines like Prognostics and Health 

Management.  

It is the aim of this paper to highlight the value of the ROC-

based approach in a) evaluating, comparing and optimizing 

predictive algorithm performance and b) for business case 

analysis specifically for aeronautical applications such as for 

optimizing engine maintenance expenses.  

In section 2, some general conclusions are drawn resulting 

from accounting for costs of the predictive maintenance 

solution itself as well as for those resulting from decisions / 

actions taken on its basis including the negative effects of 

false alarms (e.g. inspection maintenance event, delays) and 

missed detections (leading e.g. to failures, cascading effects, 

delays / cancellations). Section 3 concerns with a meaningful 

application case of ROC-based cost-benefit analysis for 

determining cost saving potentials of various failure 

prediction algorithms regarding unscheduled engine 

removals. Finally, in section 4 we conclude and provide an 

outlook on future work in section 5.  

Besides giving a practical guide for assessing the economic 

value of research approaches in failure prediction, this study 

is meant to give directions for industry decision making. 

2. ROC-CURVE AND COST-BENEFIT ANALYSIS 

As mentioned in the introduction, for a binary classification 

problem (true / false), there are four potential outcomes 

1. Predicted as ‘true’, actual value is ‘true’, i.e. a ‘True 

Positive’ TP 

2. Predicted as ‘true’, actual value is ‘false’, i.e. a 

‘False Positive’ FP 

3. Predicted as ‘false’, actual value is ‘false’, i.e. a 

‘True Negative’ TN 

4. Predicted as ‘false’, actual value is ‘true’, i.e. a 

‘False Negative’ FN 

Actual Positives P and Negatives N are hence respectively 

given by the sum of TP and FN as well as TN and FP. This 

leads to the definition of  

True Positive Rate 𝑇𝑃𝑅 =
𝑇𝑃

𝑃
, 

False Positive Rate 𝐹𝑃𝑅 =
𝐹𝑃

𝑁
, 

True Negative Rate 𝑇𝑁𝑅 = 1 − 𝐹𝑃𝑅, 

False Negative Rate 𝐹𝑁𝑅 = 1 − 𝑇𝑃𝑅 

(1) 

  

Note that of the four rates only two are independent such that 

all rates may be expressed in terms of TPR and FPR. 

Accordingly, when applied to failure prediction, for instance 

within a predefined time-window, this is associated with the 

following outcomes  

1. Correct failure prediction: avoiding a potential 

unscheduled maintenance event and possible 

contingency damage costs due to cascading 

effects, allowing for timely planning of 

necessary MRO actions with estimated RUL as 

latest due date 

2. False alarm: an impending failure is indicated, 

even though no failure is impending or it is 

reported early leading to unnecessary 

inspection costs / potential labor and logistic 

costs associated with component or system 

replacement for testing and resulting costs 

associated with Aircraft On Ground (AOG)  

3. Correct prediction of normal operation, no 

positive or negative cost impact 

4. Missed detection / failure: impending failure is 

not predicted or predicted late. In practice, the 

same consequence as a failure not covered by 

the prediction system leading to a potential 

unscheduled event, possible contingency 

damage costs, potential labor and logistic costs 

associated with component or system 

replacement and AOG-related costs  

Typically, a failure prediction algorithm would associate 

each prediction with some instance probability or score (btw. 

0 and 1) (Metz, 1978). Regarding positive (negative) 

predictions, the closer the score is to 1 (0), the higher is the 

algorithm’s confidence in this classification result. In order 

to produce a discrete classifier output, it becomes evident that 

the operator has the freedom of choosing a decision threshold 

above / below which the prediction is rated as positive (i.e. 

failure, to the right of the threshold) / negative (i.e. normal 

operation, to the left of the threshold) (cf. Figure 1). Taking 

besides the two choices presented in the figure, all possible 

combinations of relative occurrences of correct / incorrect 

outcomes of the prediction (that are evaluated as such by later 

inspection of actual conditions of monitored components or 

systems) allows for the construction of the so-called Receiver 

Operating Characteristics (ROC) curve. Here, each point on 

the ROC curve corresponds to a different choice of 

classification threshold and subsequent evaluation of the 

relative occurrences of incorrect and correct predictions. 

Here, the ROC-curve is a key algorithm-specific performance 

measure (cf. Figure 2a)) (Metz, 1978) that enables evaluating 

the trade-off between FPR and TPR. 

A measure for the algorithm’s discriminability between 

positive and negative instances is given by the Area Under 

Curve (AUC). Minimal AUC corresponds to that of a random 

classification (i.e. 𝐴𝑈𝐶 = 0.5), and maximal AUC to that of 

a perfect classifier (i.e. 𝐴𝑈𝐶 = 1), allowing for an operating  
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point on the ROC curve only associated with benefits 

(𝑇𝑃𝑅 = 1)and no penalties (𝐹𝑃𝑅 = 0) (cf. Figure 2a)) 

(Metz, 1978). 

Considering that the ROC curve captures all possible 

combinations of correct / incorrect predictions, each of which 

is associated with specific actions / follow-up costs, the 

natural connection between the ROC-curve and cost-benefit 

analysis becomes apparent. The task is to find the optimal 

operating point on a ROC-curve that is associated with the 

best cost-benefit balance, promoting this choice to an 

application-specific business decision.  

As concerns the average costs C for all possible prediction 

outcomes, these are given by (Metz, 1978) 

    𝐶 = 𝐶0 + 𝐶𝑇𝑃 ∙ 𝑝(𝑇𝑃) + 𝐶𝐹𝑃 ∙ 𝑝(𝐹𝑃) 
 + 𝐶𝐹𝑁 ∙ 𝑝(𝐹𝑁) + 𝐶𝑇𝑁 ∙ 𝑝(𝑇𝑁), 

(2) 

  

where C0 summarizes overhead costs associated with the 

predictive maintenance solution (e.g. development, 

implementation and maintenance costs) and the other 

summands correspond to the average costs of each type of the 

four possible predictions, i.e. respectively, the costs of the 

prediction consequence, multiplied by the probability that 

this prediction occurs. Since true negative predictions (i.e. 

predictions of normal operation) are not associated with 

specific actions / follow-up costs (𝐶𝑇𝑁 = 0), the last term 

vanishes. Furthermore, for instance 𝑝(𝑇𝑃) corresponds to the 

occurrence probability of the failure mode 𝑝𝑓𝑎𝑖𝑙  multiplied by 

the probability that an actual failure will be predicted as such 

(i.e. TPR) such that 𝑝(𝑇𝑃) = 𝑝𝑓𝑎𝑖𝑙 ∙ 𝑇𝑃𝑅. Similarly, it is 

𝑝(𝐹𝑃) = 𝑝𝑛𝑜 ∙ 𝐹𝑃𝑅, 𝑝(𝐹𝑁) = 𝑝𝑓𝑎𝑖𝑙 ∙ (1 − 𝑇𝑃𝑅) and 

𝑝(𝑇𝑁) = 𝑝𝑛𝑜 ∙ (1 − 𝐹𝑃𝑅), where 𝑝𝑛𝑜 denotes the probability 

for normal operation.  

The maximally achievable net benefit NBmax due to failure 

prediction results from the difference in conventional costs 

Cref  (without the specific failure prediction algorithm) and 

Cmin, the minimal value of the cost function C, 

𝑁𝐵𝑚𝑎𝑥 = 𝐶𝑟𝑒𝑓−𝐶𝑚𝑖𝑛 (3) 

  

Accordingly, from analyzing the net benefit e.g. as a function 

of prediction error (FPR), the optimal operating point can be 

found as that leading to the maximally achievable value of 

the net benefit, NBmax.  

In Figure 2b), an exemplary calculation of the relative net 

benefit as a function of prediction error (FPR) is shown, 

which assumes fixed follow-up costs for all possible 

prediction outcomes according to Eq. (2), the same prediction 

quality (cf. ROC-curve in Figure 2a)), but varying occurrence 

probability of a failure mode. Compared with the benefit due 

to correct failure prediction (TP), fairly high cost penalties 

are assumed for FPs and FNs. The reference is chosen such 

that  

𝐶𝑟𝑒𝑓 = 𝐶𝑓𝑎𝑖𝑙 ∙ 𝑝𝑓𝑎𝑖𝑙, (4) 

  

where 𝐶𝑓𝑎𝑖𝑙 = 𝐶𝐹𝑁 and 𝑝𝑓𝑎𝑖𝑙 = (𝑝(𝑇𝑃) + 𝑝(𝐹𝑁)). This case 

may be interpreted as typical for corrective maintenance, 

where failed equipment is typically only restored after a 

damage has occurred. Accordingly, the associated costs 

correspond to those arising from missed detections, 𝐶𝐹𝑁, i.e. 

from unexpected damage for a system with failure prediction. 

This case is chosen for simplicity, since here a direct relation 

 
Figure 1. Distributions of actual positives (solid) and negatives (dashed) as a function of score with a) a rather strict 

decision threshold (dotted) leading to fairly low FPR and TPR and b) a rather lax decision threshold leading to fairly 

large FPR and TPR.  

 

a)                                                                                                             b) 
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exists between the parameters specifying the costs with 

failure prediction and without (i.e., the reference). 

It becomes apparent from Figure 2 that the net benefit 

achievable with the same ROC-curve is application specific: 

while for a semi-frequent and for an often-occurring failure 

mode, a business case is given for failure prediction 

irrespective of the prediction quality, for a rare failure mode, 

σ denotes the economically viable range of FPR. 

Furthermore, it becomes apparent that the choice of operating 

point is a business decision. Its optimal value minimizes costs 

due to prediction errors and maximizes benefits resulting 

from correct predictions e.g. of impending failures of 

components or (sub-)systems. For decreasing failure 

occurrence probability, the optimal operating point on the 

ROC curve (solution to Eq. (3)) moves to lower values of 

FPR and TPR (cf. Figure 2). This means here, a strict decision 

threshold is most favorable, while respectively a medium and 

lax threshold are best for medium and high failure occurrence 

probability. This is related with the fact that in case a failure 

mode is rare, almost all positive predictions will be false 

positive. Due to the assumed large cost penalties arising from 

false positive predictions, this implies that NBmax is associated 

with smaller values of FPR and hence also of TPR for lower 

failure event rate. Since in comparison, costs benefits due to 

correctly predicted failures occur less often and furthermore, 

lower values of TPR tend to enhance the negative effect of 

FNs (cf. Eq. (2)), the achievable overall relative benefit 

decreases with failure occurrences probability. 

Some (further) general conclusions from ROC-based cost-

benefit analysis may be drawn: 

 In particular for rather poor prediction quality, the 

choice of a strict / lax threshold is not only beneficial 

for (Metz, 1978) a rare / often failure mode, but also 

for  

 𝐶𝐹𝑃 ≫ 𝐶𝐹𝑁−𝐶𝑇𝑃 / 𝐶𝐹𝑃 ≪ 𝐶𝐹𝑁−𝐶𝑇𝑃 , i.e., e.g. if 

failure prediction is of little benefit, but false alarms 

are very costly / if costs of actual failure resulting 

from a missed detection (e.g. due to cascading 

effects) are much larger than costs for timely 

maintenance / repair before actual failure occurs 

 If conventionally, costs for unscheduled 

maintenance are comparatively high / low, 

allowable prediction error / overhead costs are 

comparatively high / low as well. 

 Overall costs may increase, despite of good 

algorithm performance, if overhead costs C0 are too 

high  

3. APPLICATION EXAMPLE: ENGINE MAINTENANCE 

Over its service lifetime, the majority of an aircraft’s 

maintenance exposure arises from three main areas: airframe, 

engine and components. Making up a significant contribution 

of about 30-40% of the total maintenance expenses, 

expenditures arising from the engine exhibit an important 

impact on the market value of the whole aircraft at any given 

time (Ackert, 2011). 

Regarding engine maintenance practices in aeronautics, there 

has been a shift in industry from fixed maintenance intervals 

towards engine on-condition monitoring. The aim is to 

remove engines only when internal components reach their 

individual life limits, or performance monitoring indicates 

 
Figure 2 a) The ROC curve can be directly related to b) cost-benefit analysis of predictive analytics for specific business 

problems allowing for algorithm performance evaluation, optimization and finally, for identification of business cases 

with net relative benefit.  
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operation outside of parameter values suggested by 

manufacturers (Ackert, 2011). 

In support of this paradigm, the ability has been improving of 

accurately predicting the time to failure (or Remaining Useful 

Life (RUL)) of various components. In particular, this 

enables engine removal from service for repair and/or 

refurbishment before secondary damage may result from 

failed parts. The further development of this capability is in 

particular in demand for failures of hot section components 

such as turbine blades, nozzels, rotor or combustor 

components that can induce high economical penalties 

arising both from turbine downtimes and from potential 

cascading effects inducing high down-stream damage costs 

(Pillai, Kaushik, Bhavikatti, Roy & Kumar, 2016).  

Various factors such as operating conditions, specific 

material and manufacturing characteristics or environmental 

conditions can significantly influence the lifetime of 

components and are partly difficult to incorporate in a physics 

framework. Correspondingly, Pillai et al. (2016) firstly 

exploited a physics-based damage accumulation model based 

on Computational Fluid Dynamics (CFD) and Finite Element 

(FE) simulations that translates turbine operation data into the 

probability of failure of the considered components (by 

comparing estimated damage with a damage threshold 

expected to lead to a failure). Then, they fused the latter with 

data e.g. on manufacturing, geography and environment as 

well as customer and inspection information by means of 

machine learning techniques. This hybrid approach has been 

shown to allow for significantly improving predictive 

capability in failure detection of turbine blades e.g. regarding 

creep-driven cracking. This is manifested in a 60% increase 

in AUC of the respective ROC-curves for failure prediction 

of the hybrid physics-/data-based compared to the pure 

physics-based approach (Pillai et al., 2016). 

In the following, it is demonstrated that ROC-based cost-

benefit analysis can be applied to evaluate cost reduction 

potentials of such predictive approaches with regards to 

Unscheduled Engine Removal (UER) in dependence on the 

achievable failure prediction quality (as measured by the 

corresponding ROC-curve, cf. section 2).  

Possible extensions of the approach to further optimize 

engine workscope planning e.g. with regards to maximizing 

time-on wing or minimizing the number of shop visits will be 

discussed in section 5. 

3.1. Potential Analysis for Reducing Unscheduled 

Engine Maintenance Costs: ROC-based Approach 

With the aim of assessing cost reduction potentials regarding 

UER based on failure prediction and the ROC-based 

approach outlined in section 2, in the next section the stage 

will be set for deriving quantitative results in section 3.1.2. 

3.1.1. Setting the stage for ROC-based Cost-benefit 

Analysis 

In general, the Shop Visit Rate (SVR) of an engine may be 

broken into the scheduled removal rate (e.g. resulting from 

expiry of Life-Limited Parts (LLPs), performance 

deterioration and service bulletin compliance) and 

unscheduled removal rate. The latter measures the number of 

times unexpected engine anomalies or failures require engine 

removal for repair or refurbishment before normal 

maintenance intervals are reached (Ackert, 2012). This 

causes a shop maintenance event with associated Shop Visit 

Costs SVCs and the necessity of installing an airworthy (new 

or repaired) engine.  

The reciprocal of the total SVR is the engine’s Mean-Time-

Between Removals MTBR, another important reliability 

metric (Ackert, 2015). 

As discussed in section 2, unexpected maintenance is more 

expensive than scheduled MRO actions based on knowledge 

of an impending failure. Besides potential Contingency 

Damage Costs CDC, Logistic Costs LC increase, if the engine 

needs to be replaced outside of the base owing to an in-

service failure (Batalha, 2012). Here, one can discriminate 

two cases associated with decreasing occurrence 

probabilities, but increasing severity of economical penalties: 

 On-ground occurrence or detection of engine failure 

with probability pg and logistic costs LCg  

 In-flight occurrence of failure with probability 𝑝𝑓 <

𝑝𝑔  and logistic costs 𝐿𝐶𝑓 > 𝐿𝐶𝑔 due to potential 

engine In Flight Shut-Down (IFSD) that may cause 

the necessity to replace the engine in an alternate 

airport (Batalha, 2012). 

Adding to this, in general, unexpected AOG is associated 

with a contribution loss CL (revenue-variable costs) (Batalha, 

2012). 

Engine removal causes are generally highly dependent on 

type of operation (Ackert, 2012). In the following, a focus is 

placed on widebody engines and events caused by High 

Pressure Turbine (HPT) components such as HPT stage 1 and 

stage 2 blades, which are typically among the top-rated 

removal causes (Ackert, 2012). In general, the occurrence 

probability for UER events caused by turbine blades depends 

on engine type, characteristics of the blades, experienced 

mission profile and number of cycles, operating conditions as 

well as SVR and work scope and possible repair actions 

during shop visits.  

 

For simplicity, in this exploratory study, we will assume that 

UERs caused by turbine blades happen at random with a 

(roughly) constant event rate λUER per 1000 FH. This yields  



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

6 

an exponential probability density function (MacLean, 

Richman, & Hudak, 2018)1 

 

𝑓𝑈𝐸𝑅 = 𝜆𝑈𝐸𝑅𝑒−𝜆𝑈𝐸𝑅𝑡    (5) 

  

and hence a cumulative distribution function pUER describing 

the occurrence probability up to and including time T 

𝑝𝑈𝐸𝑅 = ∫ 𝑓𝑈𝐸𝑅𝑑𝑡
𝑇

0

= 1 − 𝑒−𝜆𝑈𝐸𝑅𝑇 
   (6) 

  

With probability 𝑝𝑓, the engine failure is an in-flight event Ef. 

For a (roughly) constant in-flight occurrence rate 𝜆𝑓  this 

yields in accordance with Eq. (6) 

  

𝑝𝑓 = 1 − 𝑒−𝜆𝑓𝑇 (7) 

  

In Figure 3, a schematic representation of all possible events 

with / without failure prediction with the associated follow-

up costs and occurrence probabilities is given (cf. section 2 

for the discussion of occurrence probabilities of all possible 

correct / incorrect predictions). Note that with failure 

prediction, the only source of UERs is provided by FN 

predictions. These, however, occur with a factor of 

(1 − 𝑇𝑃𝑅)−1 lower probability than in the reference 

scenario. As concerns FP failure predictions, the severity of 

cost-penalties strongly depends on whether line inspections 

with comparatively low Inspection Costs ICs suffice for 

revealing them (e.g. excluding safety-critical crack-growth 

by borescope inspections) or whether the necessity of engine 

removal (potentially outside of the base with additional 

                                                           
1 A more refined Weibull-approach, which allows for a time-dependence of 
the event rate and is calibrated by means of engine field data, is worked out 

in on-going work. 

logistic costs depending on the determined RUL) and 

subsequent shop visit arises.  

Overhead costs for failure prediction (cf. section 2) are 

neglected in this study. Clearly, for economic viability, an 

upper limit will be given by the achievable net benefit of 

failure prediction.  

Furthermore, creep is an important type of time-dependent 

degradation mechanism of turbine blades, while not being the 

only one (Pillai et al., 2016). Given the exploratory nature of 

this work and for the purpose of concreteness, the 

corresponding achievable prediction quality of creep-induced 

cracking of turbine blades presented by Pillai et al. (2016) is 

taken as representative for the prediction of HPT blade 

failures in the following. Refinements to this approach are 

left for future work. Moreover, as a reference, widebody 

engines are considered.  

Based on these assumptions, literature results elaborated on 

in the following will be used for specifying the corresponding 

typical UER rates and related follow-up costs necessary to 

quantitatively perform a ROC-based cost-benefit analysis as 

outlined in section 2. A collection of representative, 

literature-based values for various cost factors mentioned in 

Figure 3 can be found in Table 1. Here, a typical cost split 

into 60-70% material costs, 20-30% labor costs and 10-20% 

repair costs (Ackert, 2015) has been assumed to estimate the 

respective SVCs for turbine failures as well as ICs potentially 

associated with FPs. Furthermore, the estimate of CLg/f  

assumes a contribution loss of 14 FH per day and respectively 

5 and 7 days AOG for engine replacement after on-ground 

and in-flight failure (Batalha, 2012). Typically, for the 

 
 

Figure 3. Schematic representation of all possibilities of events with (potential) associated follow-up costs and occurrence 

probabilities for a) the reference and b) the failure prediction scenario. 
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considered failure mode, the failure rate varies with the 

number of flight hours, since the component has come into 

service and since last repair. For this reason, in section 3.1.2, 

the dependence of the net average benefit on variations in the 

event rate is investigated for sensible parameter ranges.  

 

Typical event rates for UER caused by turbine blades in 

different stages after last shop visit (respectively, after a 

couple of years in operation as well as soon after coming into 

service / after repair) are extracted from Ackert (2012) for a 

widebody engine. Respectively, they take values of 3.6 10-3 

and 7.0 10-4 per 1000 FH for HPT stage 1 blades as well as 

1.2 10-3 and 3.0 10-4, per 1000 FH for HPT stage 2 blades. In 

total, this respectively amounts to 18 % as well as 6% of the 

total unscheduled UER rate, which has a typical value of 

0.026 per 1000 FH for a mature-run, widebody engine 

(Ackert, 2012). The total SVR amounts to 0.032 per 1000 FH, 

corresponding to a MTBR of 31,250 FH (i.e. e.g. a period of 

about 9.5 years for 9 FH per day). Furthermore, the total 

IFSD rate is about 5 10-3 per 1000 FH (Batalha, 2012).  

Based on the parameters presented in this section, a 

sensitivity analysis will be performed in the next section, in 

order to single out the most important contributions 

influencing the achievable net average benefit resulting from 

the prediction of HPT blade failures. 

3.1.2. Results: ROC-based Cost-Benefit Analysis 

This section demonstrates the value of ROC-based cost-

benefit analysis for assessing cost-reduction potentials 

regarding unscheduled engine removals (UER) achievable by 

means of failure prediction algorithms. In general, their 

influence on the relative benefit in relation to the reference 

without UER failure prediction depends on  

 Event rates and corresponding failure probabilities 

as analyzed by varying event rates for widebody 

engines within sensible limits (cf. the last section) 

and by considering the time dependence according 

to Eqs.   (6) – (7) 

 Various costs associated with all possible cases with 

and without failure prediction (cf. Figure 3) as 

analyzed by a variation of those costs within 

sensible limits 

 Relative occurrence of all possible correct and 

incorrect predictions as analyzed by varying the 

operating point on the considered ROC curves 

 Prediction quality as analyzed by considering three 

different ROC curves (cf. Figure 4), two of which 

correspond to those achievable for creep-induced 

turbine blade failures deduced in Pillai et. al (2016) 

(hybrid approach fusing physic and data (LASSO 

model) as well as pure physics-based approach, 

respectively). The better of the two is approximated 

by a continuous function (referred to as ROC 1) that 

is considered first for cost-benefit analysis. 

 

Figure 4: Considered ROC curves for failure prediction, 

ROC2 and ROC3 respectively corresponding to a hybrid 

physics-/data-based as well as pure physics-based approach 

(Pillai et al., 2016).  

Key results of the analysis are subsequently presented. These 

emerge from using Eqs. (2) – (3), the costs specified 

according to Figure 3, the failure occurrence probabilities 

according to Eqs. (4) –    (6) as well as realistic (ranges of) 

parameters discussed in section 3.1.1.  

In Figure 5, for various cost scenarios, the relative net benefit 

achievable by the prediction of HPT blade failures (with  

Table 1. Various sources of costs with values based on 

Batalha (2012) for in-service engine removal due to 

on-ground / in-flight failure.  

 

Costs  
Estimates 

[k $] 

SVCg/f  Shop visit costs after on-ground / in-

flight failure 
12 - 700 

Potential contingency damage costs CDCf 

due to in-flight failure 
500 

Potential (line) inspection costs IC due to a 

false alarm (FP) 
0.2 

SVCFP potential SVCs due to a false alarm 

(FP)  
2 

LCg/f  Logistic costs to replace an engine 

outside the base due to on-ground / in-flight 

failure (e.g. at alternate airport due to IFSD)  

100 / 250 

CLg/f loss of contribution (revenue – variable 

costs) during AOG time due to on-ground / 

in-flight engine failure 

266 / 372 
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Figure 5. Impact of various cost terms on relative net benefit 

achievable per widebody engine per MTBRs.  

performance according to ROC 1) compared with the 

reference (no UER failure prediction) is shown as a function 

of FPR (i.e. representing all possible operating points on the 

ROC-curve). Here, a fixed failure rate of 18% of the total 

unscheduled events rate is assumed. For a widebody aircraft, 

this event rate is typical for widebody engines for events 

caused by HPT 1st and 2nd stage turbine blades a couple of 

years after last shop visit (cf. the discussion in the last 

section). As demonstrated by Eqs.    (6) – (7), for fixed event 

rate the probability of occurrence of an unscheduled event 

grows with flight hours, e.g. since last shop visit. In Figure 5, 

this effect is taken into account by plotting the occurrence 

probability as a function of flight time up to 𝑇𝑚𝑎𝑥 = 2 ∙
𝑀𝑇𝐵𝑅. This limit seems reasonable as a reference, since if 

not at the first shop visit, then it is likely that after the second 

removal all core components including the HPT blades have 

been refurbished (Ackert, 2012). As mentioned before, 

shortly after coming into operation or after a shop visit with 

turbine blade replacement, the removal rate due to turbine 

blade failures may be significantly smaller (Ackert, 2012, 

MacLean et al., 2018) than right before the next shop visit 

with core restoration. Yet, with increasing age and operating 

cycles (but also after turbine blade repair compared to new 

condition) it is to be expected that the engine removal rate 

due to turbine blade failures tends to increase in particular as 

the life limit of blades (up to 30,000 EFC) is approached 

(Ackert, 2012). An analysis of the effect of variation in the 

failure rate on the achievable relative net benefit is presented 

later on in this section.  

One observes from Figure 5 the importance of selecting the 

optimal operating point on the ROC curve (i.e. the most cost-  

 
efficient relative occurrence of TP and FP for ROC 1). For 

the respective cost scenarios, only in two cases the relative 

net benefit turns out to be positive for all choices of the 

decision threshold (i.e. for all possible combinations of FPR 

and TPR). Yet, in four cases, a FPR larger than about 0.6 

would lead to higher costs than without failure prediction. 

Hence, the ROC-based cost-benefit analysis allows to 

identify business cases for failure prediction with optimal 

operating point and significant positive net benefit for the 

respective scenarios (cf. Table 2).  

As demonstrated by Figure 5, the achievable relative net 

benefit increases with contingency damage costs CDC, since 

these tend to increase reference costs and hence make failure 

predictions more valuable. 

Yet, if false positive predictions are assumed to always 

require an engine removal, then for fixed prediction quality, 

the relative net benefit will decrease with the resulting AOG 

costs and shop visit costs SVC 

In contrast, if line inspections would suffice to detect false 

positive failure predictions without requiring engine 

removals, then the achievable relative net benefit would be 

superior to all other cases, reaching values as high as 97% for 

𝐹𝑃𝑅 = 0.73 and 𝑇𝑃𝑅 = 1.00. Since in this case, false 

positive predictions are not associated with large follow-up 

costs, here, the penalties associated with incorrect predictions 

mainly arise from missed detections (i.e. false negatives). 

However, their relative occurrence probability decreases with 

increasing TPR. Hence, since choosing an operating point on 

the ROC curve allowing for high 𝑇𝑃𝑅 = 1, this explains why 

a large relative benefit is achievable compared to the 

reference. The respective maximally achievable relative net 

benefit for the six considered scenarios is summarized in 

Table 2 together with the corresponding optimal operating 

point on the ROC curve. While some of the scenarios where 

chosen in order to demonstrate the influence of the various  

Table 2. Optimization of relative net benefit (cf. 

Figure 5 and Table 1). 

 
Scenario Optimized 

relative  

net benefit 

[%] 

Optimized 

FPR, TPR 

1) Low SVC, no 

CDC, no CL 
70.64 0.15,0.84 

2) Low SVC, CDC, 

no CL 
73.58 0.21, 0.93 

3) Low SVC, CDC, 

CL 
60.85 0.16, 0.87 

4) High SVC,  CDC, 

CL 
52.68 0.16, 0.87 

5) Low SVC, no 

CDC, CL 
59.17 0.16, 0.86 

6) Low SVC, CDC, 

no CL for FP 
97.43 0.73, 1.00 
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Figure 6. Impact of event rate on relative net benefit within 

2∙MTBRs for scenario 3) as specified by Table 1 – Table 2. 

 

costs terms, scenarios 3), 5) and 6) are considered as 

meaningful options that will be further pursued in the 

following.  

As mentioned before, the failure rate for the considered 

failure mode would typical increase with flight time since last 

shop visit. In the following, the effect of variation in the 

failure rate on the achievable relative net benefit is 

investigated for the meaningful cost scenarios 3) and 6) (cf. 

Table 2), while apart from the event rate all other parameters 

are kept fixed. Thereafter, the influence of growing failure 

probability with time will be analyzed for the respective 

optimal operating points on the ROC-curve that in general 

can vary with time, too.  

Typical fractions of the total unscheduled event rate in 

different stages after last shop visit are considered (cf. the 

discussion in the last section). Furthermore, as an upper limit 

on the specific event rate of the considered failure mode, the 

total unscheduled event rate is taken accounting for all 

possible failure causes. Moreover, as above, two extreme 

cases regarding the costs associated with false alarms are 

considered: firstly assuming the necessity of engine removal 

and subsequent shop visit (i.e. scenario 3)), secondly 

assuming that all false positive failure predictions are 

discovered e.g. by borescope inspections, while the aircraft is 

on ground (i.e. scenario 6)).  

In general, follow-up costs associated with false positive 

predictions grow in proportion to (1-pUER), FPR and the 

corresponding cost penalty (cf. Eq. (2)). 

 
Figure 7. Impact of event rate on relative net benefit within 

2∙MTBRs for scenario 6) as specified by Table 1 – Table 2.  

 

From Figure 6, it becomes evident that in the first case, the 

maximally achievable relative net benefit in relation to the 

reference varies fairly much with failure occurrence 

probability in the full range of conceivable probabilities, 

taking values between maximally 4 % (lowest assumed event 

probability) and 100% (highest assumed probability) of the 

total unscheduled event rate. However, independent of failure 

occurrence rate, a positive net benefit can be achieved. One 

observes that the optimal operating point on the ROC curve 

moves to lower values of FPR and TPR for decreasing failure 

occurrence probability. The reason is that if a failure mode is 

rare, almost all positive predictions will be false positive. 

Owing to the assumed large cost penalties arising from false 

positive predictions causing engine removal and associated 

downtime, this implies that the tolerable FPR-rate decreases 

with the failure event rate at the dispense of also decreasing 

TPR. In total, the positive effect of true positive predictions 

is less frequently coming into play for reduced event rates and 

furthermore, lower values of TPR tend to enhance the 

negative effect of missed detections (cf. Eq. (2)) such that the 

overall relative benefit decreases in comparison to that of 

larger event rates. 

In the second case, the situation is quite different. Here 

varying the failure event rate has hardly any impact on the 

achievable relative benefit, taking maximal values between 

96% and 97% (cf. Figure 7). An operating point on the ROC 

curve with (fairly) high FRP, and hence also TPR, is optimal 

in all cases. Clearly, this is due to the fact that false alarms 

lead to essentially negligible cost penalties such that a high 

FPR can be tolerated, correspondingly leading to a high TPR. 
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Figure 8. Cost scenario 3), a) relative net benefit as a function of FPR and b) net benefit as a function of T.  

 
 

 
Figure 9. Cost scenario 5), a) relative net benefit as a function of FPR and b) net benefit as a function of T.  

 
 

 
Figure 10. Cost scenario 6), a) relative net benefit as a function of FPR and b) net benefit as a function of T. 

 

a)                                                                                                           b) 

a)                                                                                                           b) 

a)                                                                                                           b) 
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It minimizes the occurrence of missed detections (i.e. FNs) 

and their cost penalties and optimizes the achievable benefit 

due to true positive predictions. Thereby, almost independent 

of event rate, a net relative benefit of almost 100% is 

achievable.  

As mentioned before, with increasing age and operating 

cycles (but also after turbine blade repair compared to new 

condition) it is to be expected that the removal rate due to 

turbine blade failures tends to increase (Ackert, 2012, 

MacLean et al., 2018). Yet, shortly after coming into 

operation or after a shop visit with turbine blade replacement 

it may be significantly smaller (Ackert, 2012). Hence, within 

this exploratory study, a constant value of 18% of the total 

unscheduled events seems to constitute a fair compromise, 

while the impact of the time-dependence of the event rate on 

the achievable relative net benefit is further investigated in 

on-going work.  

In the following, the event rate is kept fixed, while the failure 

prediction performance is varied. For this purpose, all ROC 

curves in Figure 4 are considered. Here, the second and third 

ROC curves correspond to the best (hybrid physics- and data- 

based) and the worst (pure physics-based) cases respectively 

found in Pillai et al. (2016).  

For the meaningful scenarios 3), 5) and 6) (cf. Table 2), a 

comparison of the achievable (relative) net benefit for all 

three ROC curves as a function of prediction error (FPR) can 

be found in Figure 8 –Figure 10. In Figure 8a) – Figure 10a), 

similarly to the approach taken in the calculation for Figure 

5, the relative net benefit up to 𝑇𝑚𝑎𝑥 = 2 ∙ 𝑀𝑇𝐵𝑅 is plotted 

as a function of the prediction error (FPR).  

In Figure 8b) – Figure 10b), for the optimal operating point 

of the respective ROC curves that in general varies with time, 

the increase of the net benefit with time T in units of 1000 FH 

is plotted up to the mean-time between removals caused by 

HPT stage 1 and 2 blades. While the lifetime of turbine 

engine blades can extend up to 30, 000 effective flight cycles 

(Ackert, 2012) and hence roughly this order of flight hours, 

the failure probability and event rate will be influenced by 

shop visit workscope and possible repair (or replacement) 

actions. On the one hand, for those blades that have not been 

repaired or replaced yet, the failure rate is expected to 

increase with the number of experienced operating cycles. On 

the other hand, it is likely that after one or two shop visits and 

a refurbishment of all core components including the HPT 

blades, the failure rate of repaired (replaced) blades gets 

(significantly) reduced (Ackert, 2012, MacLean et al., 2018). 

Accordingly, assuming a constant medium event rate for 

engine removals caused by HTP blades of 18% for the life 

time of turbine blade sets will probably lead to an 

overestimate of the resulting net benefit that may hence be 

seen as an upper bound on the achievable gain during blade 

(set) lifetime / mean-time between removals caused by HPT 

blades. Hence, as a more realistic reference, the values for the 

(relative) net benefit at MTBRs as well as 2∙MTBRs (as 

characteristic time interval for core restoration) are given in 

Table 3. Clearly, over the lifetime of a widebody engine, this 

benefit can be achieved a couple of times.  

As mentioned before, the impact of a time-dependent failure 

rate on the net benefit is investigated elsewhere. In particular, 

this calculation would turn out useful for optimizing shop 

visit intervals as it demonstrates the time dependence of the 

reduction potential of unscheduled engine removals for the 

considered failure mode.  

For constant event rate of 18% of the total UER rate, the 

results for the maximally achievable (relative) net benefit are 

summarized in Table 3. It becomes apparent that for cost 

scenarios 3) and 5) the results are qualitatively similar. First 

of all, the prediction performance as measured by the 

respective ROC curves, has a sizeable impact on the 

achievable benefit. The first and the second ROC curve for 

both cost scenarios allow for relative net benefits around 40% 

to 50% at MTBRs (60% and 65% at 2∙MTBRs, cf. Figure 8a) 

- Figure 9 a)) with somewhat larger values in scenario 3) 

compared to scenario 5). But the third ROC curve 

(corresponding to the pure physics-based approach for failure 

prediction) only yields about 20% both at MTBRs and twice 

that time, respectively, for both scenarios. As typical for a 

Table 3. Optimized results for costs scenarios 3), 5) and 6), values for (relative) net benefit are specified at MTBRs / 

2∙MTBRs, respectively. 

 
Cost 

scenario 

Prediction 

performance 

Cost 

reference  

[k $] 

Optimized relative  

net benefit [%] 

Maximal net benefit per 

widebody engine [k $]  

Maximal net benefit of 

Lufthansa-sized widebody 

fleet [Mio. $] 

3) ROC 1 95.1 / 180.4 37.7 / 60.9 35.8 / 109.8 12.4 / 38.0 

ROC 2 49.7 / 66.2 47.3 /119.3 16.4 / 41.3 

ROC 3 18.5 / 22.8 17.6 / 41.2 6.1 / 14.2 

5) ROC 1 67.0 / 125.9 36.0 / 59.2 24.1 / 74.5 8.3 / 25.8 

ROC 2 48.2 / 65.0 32.3 / 81.8 11.2 / 28.3 

ROC 3 18.3 / 22.0 12.3 / 27.7 4.3 / 9.6 

6) ROC 1 95.1 / 180.4 97.0 / 97.6 92.2 / 176.0 31.9 / 60.9 

ROC 2 97.5 /97.8 92.6 / 176.4 32.0 / 61.0 

ROC 3 96.8 / 97.6 92.0 / 176.1 31.8 / 60.9   
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ROC curve with poor classification performance, there exists 

no cost optimum at comparatively low / high values of FPR / 

TPR as in the other two cases with good ROC performance. 

Instead, the best operating point on ROC 3 first lies at (very) 

small 𝑇𝑃𝑅 (𝐹𝑃𝑅) (cf. Figure 8a) and Figure 9a)) up to about 

respectively 3 (scenario 3)) and 4 (scenario 5)) MTBRs and 

thereafter around 𝐹𝑃𝑅 = 0.8 and 𝑇𝑃𝑅 = 1 for all cost 

scenarios. This explains the increasing slope of the net benefit 

function. At first, due to the fairly low 𝑇𝑃𝑅, a limited net 

benefit emerges. Then, the benefit due to true positive 

predictions is maximized and the negative cost impact of 

missed detections proportional to (1 − 𝑇𝑃𝑅) is minimized, 

but traded for a fairly high cost penalty due to large false 

alarm rate (i.e. FPR), again limiting the gain.  

For ROC 2, there exists a cost optimum at small values of 

FPR with values up to 0.28 in all scenarios; however, due to 

the better prediction performance than ROC 3, the latter 

corresponds to a TPR of close to 1. Hence, this leads to a 

factor of about 3 higher optimal relative net benefit compared 

with that resulting from ROC 3 both at MTBRs and 2∙MTBRs 

for scenarios 3) and 5).  

The corresponding global cost saving potentials at MTBRs / 

2∙MTBRs are with more than 0.5 Bio. $ / 1.2 Bio. $ and 0.3 

Bio. $ / 0.8 Bio. $ for the hybrid physics-/data-based 

approach (corresponding to ROC 2) respectively about 0.3 

Bio. $ / 0.8 Bio. $ (cost scenario 3)) and 0.2 Bio. $ / 0.5 Bio. 

$ (cost scenario 5)) higher than the pure physics-based 

approach, impressively demonstrating the value of data for 

predictive maintenance purposes. Note that here a global 

widebody fleet of 5∙103 has been assumed (Wyman, 2018) 

with (at least) two engines per aircraft (as conservative 

bound).  

As an example, the total number of widebodies in the 

Lufthansa widebody fleet is currently 109 with in total 346 

widebody engines (Lufthansa, 2018). Corresponding 

reference values for the achievable net benefit for this fleet 

size are given in Table 3.  

Note that while the relative net savings in scenario 3) are 

comparable to that in scenario 5), the net benefit is higher. 

The reason is that the assumed large contingency damage 

costs in this case drive up the reference costs arising from 

UERs (cf. Table 3).  

The situation is quite different for scenario 6) (cf .Figure 10). 

Here, due to the fact that false alarms are assumed to lead to 

comparatively low cost penalties, for all three ROC curves, 

the optimal operating point lies at high FPR and TPR close to 

1. Accordingly, fairly irrespective of prediction performance, 

a relative net benefit of almost 100% can be achieved 

corresponding in all cases to a cost saving potential at 

MTBRs / 2∙MTBRs of about 0.9 Bio. $ / 1.8 Bio. $ at MTBRs 

/ 2∙MTBRs for the gobal widebody fleet (cf. Table 3).  

4. CONCLUSIONS  

In this study, the value of ROC-based cost-benefit analysis 

for identifying and optimizing cost saving potentials 

associated with predictive maintenance applications was first 

generally discussed. The approach was thereafter applied to 

a representative use case within aircraft engine maintenance: 

potentials for reducing unscheduled engine removals by 

(more) accurate failure prediction were quantitatively 

assessed from an operator’s perspective, for realistic, 

literature-based ranges of costs, failure occurrence 

probabilities and algorithm performances. A focus was 

placed on events caused by HPT blade failures to make 

contact with literature results on the achievable prediction 

quality, considering both a pure physics-of-failure-based 

approach and a hybrid physics-/data-based one with superior 

prediction performance (Pillai et al., 2016).  

As a key result of this analysis, for sensible parameter ranges, 

the more accurate prediction of turbine blade failures was 

generally found to allow for significant cost savings. These 

extend up to roughly 32 Mio. $ / 1 Bio. $ for a Lufthansa-

sized / the global widebody fleet at MTBRs (i.e. a relative net 

benefit of 100% compared with current practice), neglecting 

any overhead costs for the failure prediction system itself. 

Clearly, over the lifetime of a widebody engine, this benefit 

can be achieved a couple of times.  

The highest parameter influence on the achievable net benefit 

was identified to stem from false alarms. Associated cost 

penalties can grow from comparatively low to high, in case 

for the identification of false positive failure predictions line 

(borecope) inspections do not suffice, but an engine removal 

and subsequent shop visit are required. If follow-up costs of 

false alarms are low, the net benefit of failure prediction is 

maximized (about 32 Mio. $ / 1 Bio. $ for a Lufthansa-sized 

/ the global widebody fleet at MTBRs, cf. above) and turns 

out to be independent of prediction quality. However, for all 

other considered cost scenarios, the hybrid physics-/data-

based approach yielded a significantly higher net benefit than 

the pure physics-based one of up to about 63%. Accordingly, 

as a further key result of this study, the additional use of 

relevant data e.g. on environment and inspections, pertaining 

to factors that are not easily modeled using physics 

principles, was found to be worth up to more than 10 Mio. $ 

/ 300 Mio. $ for a Lufthansa-sized / the global widebody fleet 

per MTBRs. This quantitative result impressively 

demonstrates the value of data for predictive maintenance 

purposes. 

5. OUTLOOK 

While in this study, a focus was placed on the impact of 

turbine failure prediction on unscheduled engine removal, the 

approach may be extended to include that associated with 

other failure modes and to select the corresponding most cost-

efficient prediction algorithms. The results may be exploited 

in order to further optimize engine workscope planning e.g. 
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with regards to maximizing time-on wing or minimizing the 

number of shop visits based on more accurate failure 

predictions. For instance, shop visit costs increase with time 

on wing due to deteriorating engine condition (Ackert, 2011). 

Yet, performing the shop visit at a later point in time e.g. may 

result in discounted cash flow savings (Batalha, 2012). 

Furthermore, in case a significant fraction of scheduled tasks 

may be eliminated by means of reliable failure prediction 

algorithms, the total workload and potentially also the 

downtime due to maintenance checks could be reduced. Here, 

a ROC-based cost-benefit approach allows for optimally 

trading all involved cost factors for optimized workscope 

planning in dependence on failure prediction quality.  

Finally, the approach may also be applied to assess cost-

saving potentials from failure prediction for aircraft systems 

other than the engine as investigated in on-going work. 
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