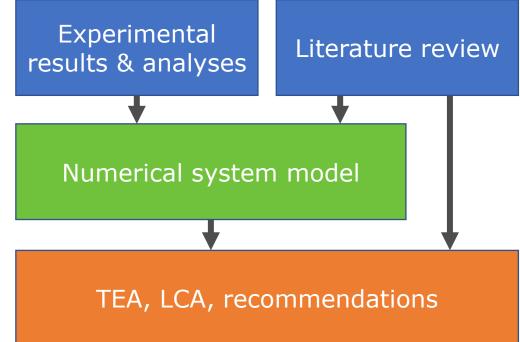
Cite as: C. Penke, "Process modelling and holistic assessment of HTL fuel production", HyFlexFuel Final Workshop, Virtual, 2021.

HyFlexFuel Final Workshop 21st – 22nd September 2021

Process modelling and holistic assessment of HTL fuel production

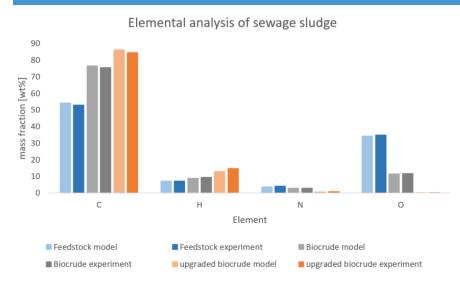
Christina Penke Bauhaus Luftfahrt e. V.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764734

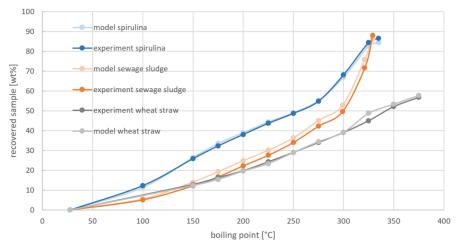

Motivation for system analysis and holistic assessment

Holistic assessment of jet fuel production via HTL

- Identification of risks and technological challenges
- Production cost
- Environmental impact
- Socio-economic benefits


Research questions

- Selection of feedstock
- Treatment of solids and the aqueous phase
- Process integration
- Provision of process heat & hydrogen
- Economies of scale
- Regional aspects of plant location



•

Development of a numerical process model

Comparison of upgraded biocrudes from different feedstock

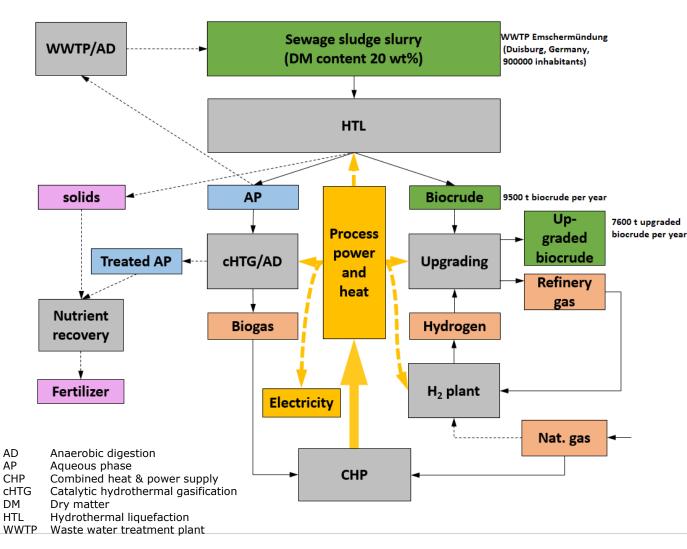
Modelling biomass conversion steps in Aspen Plus

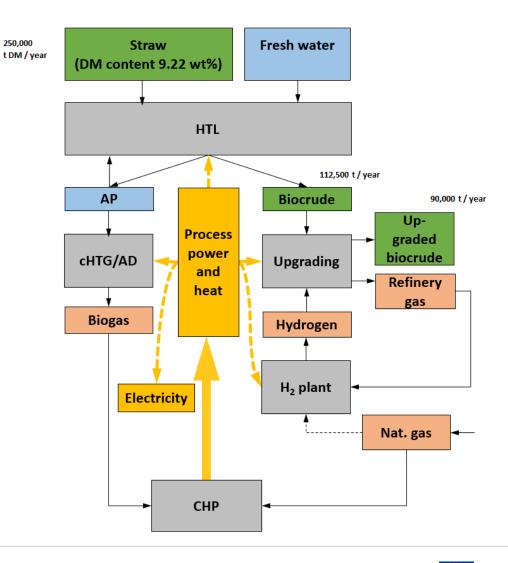
- Established for different feedstock types (Sewage sludge, spirulina, lignocellulosic)
- Taking into account thermodynamic and reaction kinetic data
- Selection of model components representing biomass, biocrude and upgraded biocrude

Reaction network

• HTL 272 reactions, upgrading 288 reactions, AP treatment via gasification 280 reactions

Good reproduction of experiments

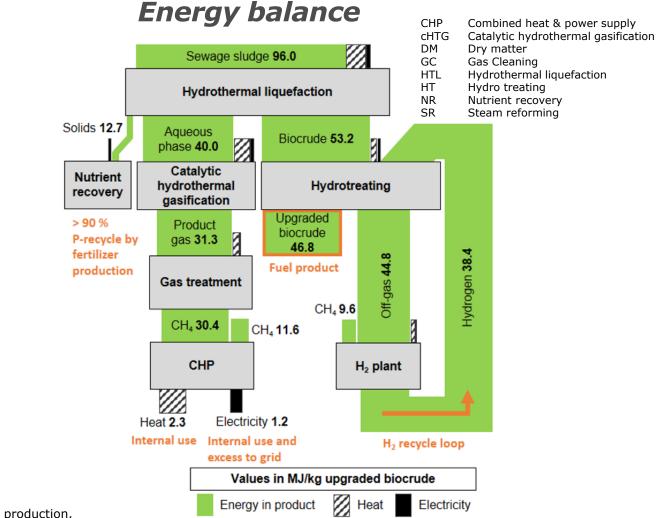

L. Moser, C. Penke, V. Batteiger, An In-Depth Process Model for Fuel Production via Hydrothermal Liquefaction and Catalytic Hydrotreating, Processes 9 (2021) 1172. https://doi.org/10.3390/pr9071172.



Process configurations and scaling

 Wet feedstocks Feedstock provision on-site Considering nutrient recovery Fuel production volume of 7.6 kt / year Investment costs of 22.9 M€ 	 Dry feedstocks Feedstock transport Considering AP recycling (90 %) Fuel production volume of 90 kt / year Investment costs of 122.1 M€ 		
 Sewage sludge Available at waste water treatment plants Different disposal routes in Europe 	 Cereal straw Available as agricultural by-product in major quantities Competing utilization processes 		
 Microalgae Scalable cultivated crop High investment costs, energy and fresh water demand result in very high feedstock costs 	 Miscanthus Scalable cultivated energy crop, theoretically available in large quantities Assumption: 30 % of agricultural areas can be used 		

Process schemes for HTL of sewage sludge and straw



Mass and energy balances sewage sludge

Sewage sludge (DM 20 wt%) 26.7 HTL Biocrude 1.4 Gas phase 0.7 AP 23.7 Solids 0.7 ΗТ cHTG Mq²⁺ 0.2 Fuel 1.0 Waste water 22.3 NaOH (1M) 0.7 H₂SO₄ (1M) 0.7 Hydrogen 0.1 cHTG gas 1.5 NR GC Methane Air 4.3 0.6 Struvite 0.4 CHP SR Flue gas 4.7 Values in kg/kg upgraded fuel

Mass balance

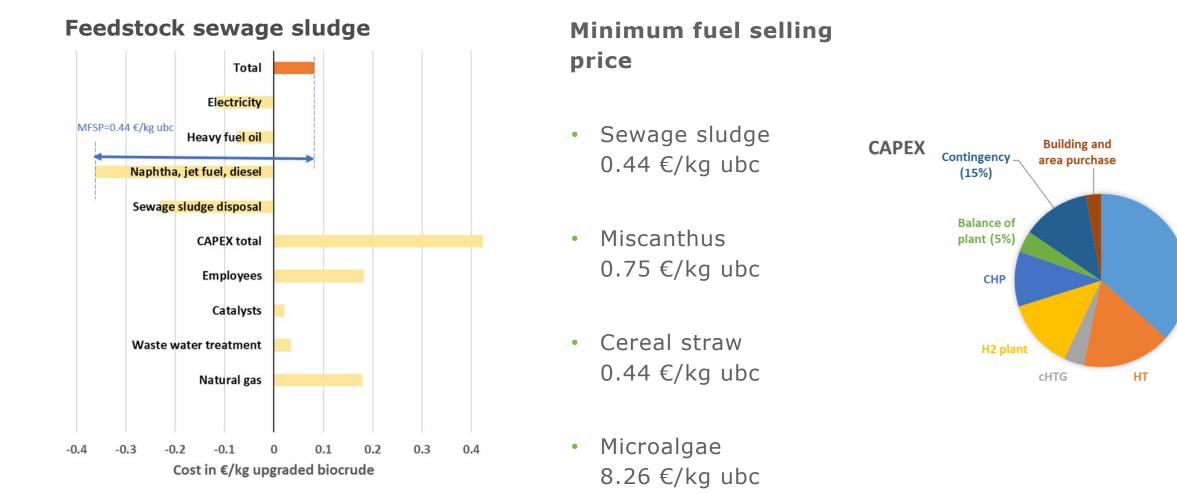
C. Penke, L. Moser, V. Batteiger, Modeling of cost optimized process integration of HTL fuel production, Biomass and Bioenergy 151 (2021) 106123. https://doi.org/10.1016/j.biombioe.2021.106123.

HyFlexFuel 🗳

TEA Input

 Interest rate based on country specific weighted average capital costs (WACC)

- Inflation of the value of money taken into account
- Consideration of local investment risk
- Wide range of WACC (e. g. 6.3 % in Greece; 2.1 % in the Netherlands)

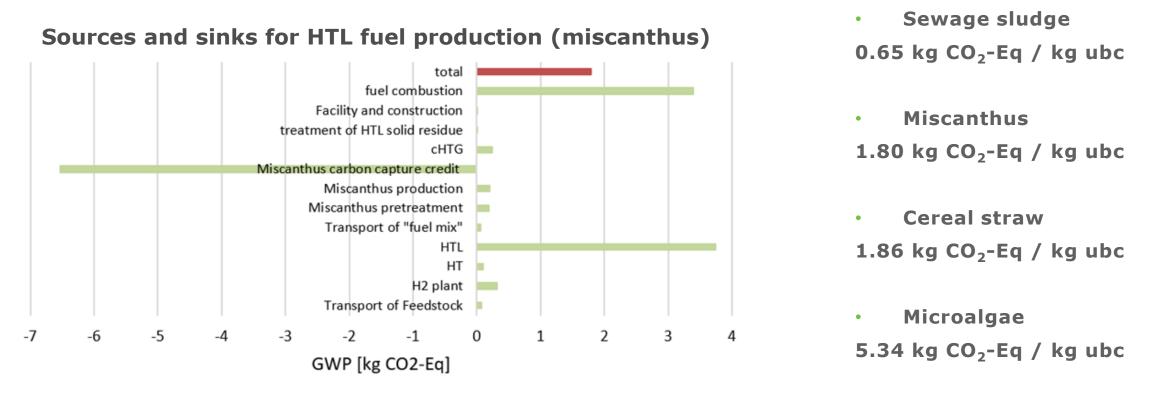

Plant lifetime 20 years, Operation: 8000 h/yr

• Plant downtime of about 9 % due to maintenance or repair

Different types of jobs considered

Large-scale HTL of straw:	Plant manger (x2)	Shift supervisor (x5)	
	Plant engineer (x5)	Shift operators (x20)	
90,000 t upgraded biocrude per year	Lab manager (x2)	Facility manager (x3)	
	Lab technician (x5)	Administration (x3)	

TEA results

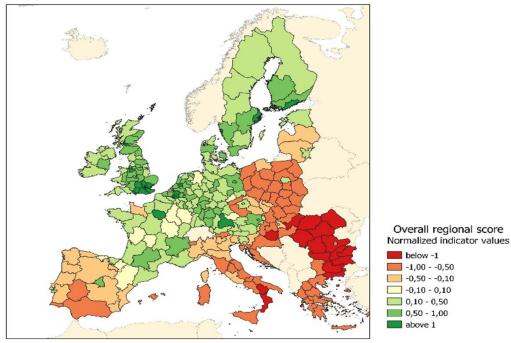


C. Penke, L. Moser, G. Özal, A. Habersetzer, V. Batteiger, HyFlexFuel Public Report -Report on techno-economic and environmental assessment, 2021. ubc = upgraded biocrude (= mixture of hydrocarbon fuels)

HyFlexFuel 🗳

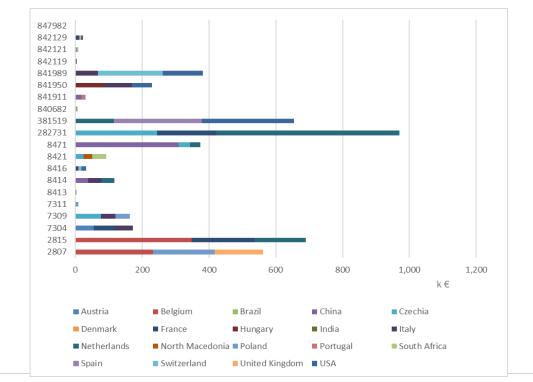
HTL

Specific GHG emissions of HTL jet fuel



- Main contributors to GHG emissions: heat and hydrogen supply, as well as CO₂containing off-gas evolving during conversion process
- High potential for improvement by using green hydrogen, renewable heat and carbon capturing processes (e. g. CCS) -> negative carbon emissions possible

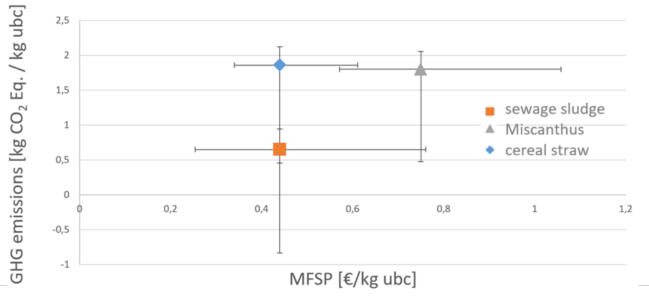
Socio-economic benefits


Methodology adapted from Garett-Peltier et al.

- Purchasing and operating costs represent a demand for specific goods and service
- This increase in demand creates additional demand along the respective value chains (e.g. additional economic values or generation of new jobs)

Regional competitiveness: Overall regional score

H. Garrett-Peltier, Green versus brown: Comparing the employment impacts of energy efficiency, renewable energy, and fossil fuels using an input-output model}, Economic Modelling 61 (2017) 439-447. https://doi.org/10.1016/i.econmod.2016.11.012.


Imports to Germany by commodity codes and exporting countries

HvFlexFuel

above 1

Trade-Off between economical and ecological aspects

- Sewage sludge: Best overall performance, but limited feedstock potential
- Cereal straw: Low fuel production costs (in large scale plants), ~50 % reduction in GHG emissions, moderate feedstock availability
- Miscanthus: Moderate fuel production costs (in large scale plants), ~50 % reduction in GHG emissions, high feedstock availability

 The three considered feedstock scenarios studied have lower GWP than conventional fuels

• Comparison of different HTL feedstock scenarios:

	Miscanthus	Straw	Microalgae	Sewage sludge
Technology readiness				
Fuel production potential				
Production costs				
Reduction in GHG emission				
Land demand				
Water demand				
Social benefits				

 Fuel production by different feedstock types is associated with different advantages and disadvantages

Conclusions

- Numerical process model of HTL fuel production chain established in Aspen Plus as basis for further system analyses
- Energy and mass balances indicate importance of aqueous phase treatment for overall energy and carbon efficiency
- If technological maturity is achieved: Upgraded biocrude may be produced at attractive cost levels (especially from waste streams)
- Regional aspects of plant location: Feedstock availability, labour cost, and financing conditions have major effect on biocrude production costs
- Significant reduction in GWP compared to conventional jet fuel in Europe, negative carbon emissions under favourable conditions possible

Thank you!

Christina Penke, Leonard Moser, Antoine Habersetzer, Valentin Batteiger

Bauhaus Luftfahrt e. V. Willy-Messerschmitt-Straße 1 82024 Taufkirchen, Germany christina.penke@bauhaus-luftfahrt.net +49 89 3074-84977

<u>www.hyflexfuel.eu</u> <u>hyflexfuel-arttic@eurtd.com</u> Follow us on Twitter @HyFlexFuel

