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Abstract: The advent of electrified, distributed propulsion in vertical take-off and landing (eVTOL)
aircraft promises aerial passenger transport within, into, or out of urban areas. Urban air mobility
(UAM), i.e., the on-demand concept that utilizes eVTOL aircraft, might substantially reduce travel
times when compared to ground-based transportation. Trips of three, pre-existent, and calibrated
agent-based transport scenarios (Munich Metropolitan Region, Île-de-France, and San Francisco Bay
Area) have been routed using the UAM-extension for the multi-agent transport simulation (MATSim)
to calculate congested trip travel times for each trip’s original mode—i.e., car or public transport
(PT)—and UAM. The resulting travel times are compared and allow the deduction of potential UAM
trip shares under varying UAM properties, such as the number of stations, total process time, and
cruise flight speed. Under base-case conditions, the share of motorized trips for which UAM would
reduce the travel times ranges between 3% and 13% across the three scenarios. Process times and
number of stations heavily influence these potential shares, where the vast majority of UAM trips
would be below 50 km in range. Compared to car usage, UAM’s (base case) travel times are estimated
to be competitive beyond the range of a 50-min car ride and are less than half as much influenced by
congestion.

Keywords: urban aerial passenger transport; eVTOL; agent-based modeling; MATSim; motorized
trip share

1. Introduction

The emergence of electrified and distributed propulsion for aerial vehicles might spur
the proliferation of urban air passenger transport. Manufacturers of such novel vehicles
that are capable of electric-powered vertical take-off and landing (eVTOL) promise reduced
noise and emission footprints as well as cheaper and safer operation when compared to
conventional helicopters. These developments might facilitate the spread and use of urban
air mobility (UAM), which—in the context of this study—is understood as an on-demand
aerial passenger transport via short-range eVTOL flights from, to, and/or within urban
areas operating from dedicated eVTOL stations which passengers are required to access
and egress from.

Occasionally, helicopter passenger transport services did exist with, for example, New
York Airways operating between 1949 and 1979 in New York and Airbus’ Voom offering
on-demand helicopter transport in São Paulo, San Francisco Bay Area, and Mexico City
from 2016 until recently ceasing operations in March 2020. Commercial helicopter services
constitute a highly costly and situational—thus, a very niche—mode of transportation.
Currently, the main benefit of helicopter transport services seems to be their relatively
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short travel times that—generally—seem unaffected by conventional ground-based traffic
congestion.

This study aims at exploring the potential travel time savings that various UAM
implementations might allow. The main objectives of this study are to provide answers to
the following three key research questions:

• What motorized trip shares could be achieved with what travel time savings?
• How much does ground-based congestion impact UAM travel times?
• On average, beyond which trip distances can UAM provide time savings?

2. Literature Review
2.1. Potential Demand

To understand demand drivers of UAM, Fu et al. [1] and Al Haddad et al. [2] con-
ducted preliminary studies to gain insights into the potential user’s choice behavior re-
garding currently available urban transportation modes and autonomous transportation
services. Their results were integrated within the microscopic travel demand model,
MITO [3], and applied to the Munich Metropolitan Region, resulting in UAM market
share estimations ranging from 0.16% to 0.38% [4]. Similarly, Plötner et al. [5] concluded
a potential modal split of 0.5% for UAM, trying to employ UAM in order to complement
public transport. Both studies [4,5] conclude that UAM is expected to have a negligible
impact on existing traffic patterns. A study by Wang and Ross [6], however, found that
the majority of on-demand trips (taxi in their case) were transit-competing rather than
transit-complementing or -extending. Since UAM is a similarly-functioning on-demand
mode like taxi, the findings from Wang and Ross [6] might also be applicable to UAM. A
study of Zurich, Switzerland, showed fewer than 2000 (0.34%) potential UAM trips [7],
with a follow-up study—which introduced UAM process times and take-off and landing
procedures—yielding a UAM trip share of 0.05% [8]. One of the main demand drivers for
UAM service usage are potential travel time reductions.

Similar to this study, Postorino and Sarné [9] applied an agent-based simulation to
analyze the impact of UAM usage on urban mobility. However, the authors focused on
flying cars rather than UAM being a separate mode of transportation from a car that merits
station access and egress. Within their simulation of grid-like transport networks, they
conclude that “(i) [individual flying cars in urban contexts] are not necessarily more conve-
nient and sustainable than current ground mobility when the demand level is increasing;
(ii) the potential advantage is linked to the O/D pair distance [...]” ([9], p. 13). If one
assumed UAM to be station-based, the placement of stations becomes highly relevant for
the accessibility of the service, as early studies have shown [10].

2.2. Station Placement

The availability of ground infrastructure is one of the most important near-term limita-
tions for UAM according to, e.g., Vascik and Hansman [11] and Liu et al. [12]. Similar to the
minimum ground infrastructure requirements for helicopters, Vascik and Hansman [11]
and Holden and Goel [13] defined several different UAM ground infrastructure concepts
and designs. Focusing on UAM station placement, different methods and provided ratio-
nales for identifying UAM locations have been proposed (see, e.g., [5,14–16]). On the basis
of two case studies for Los Angeles and Munich, Fadhil [15] conducted a geographic infor-
mation system (GIS)-based analysis to identify areas of high suitability for UAM station
locations. In another study based on the Upper Bavaria region of Germany, Plötner et al. [5]
manually placed 130 UAM stations by conducting workshops with local experts, consider-
ing various trip purposes such as commuting, business, tourism, and leisure. Using the
same study area, Arellano [16] developed a semi-automated procedure for allocating UAM
station locations, following a GIS multi-criteria decision analysis framework similar to
Fadhil [15], yet with the introduction of applying impedance minimization algorithms to
derive specific station locations.
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Other studies propose demand-driven implementations. Just like within the Uber
Elevate white paper [13], Lim and Hwang [17] employed a k-means clustering algorithm
which they applied on commute data from the Seoul Capital Area to identify centroids
for trip origins and proposed those as suitable UAM station locations. The study set up
18 network schematics with the number of UAM stations ranging up to 36 stations. Notably,
though, Lim and Hwang [17] suggest that location was more important than the number
of UAM stations. Syed et al. [18] also used a k-means clustering algorithm to allocate
stations in Northern California and the Baltimore–Washington metropolitan area. Aiming
to minimize travel times to and from stations, their k-means implementation favored census
tracts with high population and income. Based on four different scenarios with 200, 300,
400, and 1000 stations, the authors found that 20%, 25%, 30%, and 55% of potential demand
was within 5 min of a UAM station for each scenario, respectively. Extending the study
of German et al. [19] who attempt to place UAM stations for cargo delivery, Daskilewicz
et al. [20] took the spatial distribution of jobs, in addition to population and income data,
into account for the San Francisco Bay Area and Los Angeles region for allocating 10 to
40 UAM stations, with one of the studies’ results being that the majority of UAM trips had
lengths of less than 30 miles (48 km).

2.3. Environmental Impact

Another significant aspect to evaluate UAM is the environmental effect—that includes
noise—of UAM vehicle operation (see, e.g., [21–23]). To understand the traffic-related emis-
sions of eVTOL, Pukhova [21] conducted UAM simulations for the Munich Metropolitan
Region and estimated the emissions of UAM operation with regard to CO2 and NOx levels.
Based on comparing different scenarios with and without UAM, both with and without
assumptions on various technological improvements, Pukhova [21] found that UAM can
only be of environmental benefit if the electricity used by eVTOL vehicles originates from
renewable sources. Still, electric ground-based vehicles may be more energy efficient than
UAM, given the same electricity mix. Nevertheless, Kasliwal et al. [22] recently depicted
an opposing view on the environmental impact of UAM. Their study found that, when
comparing eVTOL vehicles at maximum occupancy (i.e., with three passengers) to cars
with an average occupancy (i.e., 1.54 passengers), greenhouse gas emissions per passenger-
kilometer of eVTOL flight are 50% lower than those from combustion engine cars and 6%
lower than those of electric cars.

2.4. Modelling and Simulation

The multi-agent transportation simulation framework, MATSim [24], allows for the
modeling and simulation of novel transportation concepts such as ride-sharing [25], car-
sharing [26], and shared autonomous vehicles [27–29]. Likewise, UAM—another novel
and autonomous mode—is also being modeled and studied using MATSim. The first such
analysis of potential UAM demand was conducted for the city of Zurich, Switzerland by
Balać et al. [8]. The study performed sensitivity analyses of various operational UAM pa-
rameters and proposed a mixed-integer linear program to optimize fleet size and minimize
vehicle-kilometers traveled by UAM vehicles. However, the authors point out several
limitations of the study, including a very specific modeling of the UAM service without
dedicated UAM infrastructure. This was overcome with the development of the MAT-
Sim UAM-extension, first presented by Rothfeld et al. [30], which is developed based on
the dynamic vehicle routing problem (DVRP) extension for MATSim by Maciejewski [31].
Rothfeld et al. [10] provided an initial analysis regarding the operational performance of a
potential UAM implementation, considering eVTOL vehicle properties, dedicated eVTOL
infrastructure placement, and the usage of urban airspace and aerial networks. For this,
Rothfeld et al. [10] used the extended Sioux Falls MATSim scenario by Hörl [32] to do
parameter–variation scenarios.

This initial sensitivity analysis for the MATSim UAM-extension prototype provides
the first indications concerning the influence of UAM parameters, such as vehicle speed,
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ground-based process time, and network structure, on UAM transport performance and
potential adoption (see [5,10]). Further studies (cf. [7,33,34]) also made use of the UAM-
extension for MATSim. Their key results suggest that UAM adoption is strongly influenced
by the potential for travel time reduction perceived by passenger, UAM infrastructure
placement, and duration of ground-based UAM processes. More than UAM vehicle speed
and capacity, UAM accessibility and short process times seem to be highly significant
for UAM to provide short travel times. However, most existent analyses either used
prototyping study areas or focused on the impact of UAM service pricing while using
assumptions on travel time savings that UAM can achieve. This study, however, intends to
provide an insight into those—previously assumed—travel time savings.

3. Methodology
3.1. Simulation Framework and Base Scenarios
3.1.1. MATSim and Its Application

This study makes use of the aforementioned agent-based transport simulation, MAT-
Sim [24]. MATSim itself is an agent-based transportation simulation framework that
models complex interactions of individuals and vehicles on transport networks. For that,
each agent’s daily activity plan—consisting of one or more trips—is iteratively modified,
simulated, and scored, with agents generally seeking to minimize travel time and maxi-
mize time spent performing activities. This so-called MATSim loop is repeated until an
equilibrium state is reached. MATSim has been designed to be easily extendable (see [24],
Part II: Extending MATSim) and thus facilitates the development of numerous extensions
and analysis interfaces. For modeling UAM transportation, an updated version of the
open-source UAM-extension [35] as first presented by Rothfeld et al. [10], is utilized.

In order to obtain realistic trips and congestion levels, which are vital for this study,
well-calibrated base scenarios are required. So-called MATSim scenarios contain all infor-
mation about the respective study areas’ synthetic population, each person’s activities, and
the region’s transportation supply for an average day. For this study, the following three
pre-existent scenarios are used: Munich Metropolitan Region (hereinafter abbreviated as
MUC), Île-de-France (PAR), and San Francisco Bay Area (SFO), as listed in Table 1. While
the MUC scenario has been authored by Moeckel et al. [36], PAR and SFO originate from
Hörl and Balać [37], Balać and Hörl [38], with both sets of authors using different methods
for generating and calibrating their respective scenarios.

Table 1. Overview of study areas.

Study Area Abbreviation Size [km2] Population [mil]

Munich Metropolitan Region MUC 14,882 4.4
Île-de-France PAR 12,070 11.8

San Francisco Bay Area SFO 20,724 7.9

3.1.2. Munich Metropolitan Region Scenario

The MUC scenario was created by using the open-source microscopic transport or-
chestrator (MITO) [3] and OpenStreetMap data. MITO is an agent-based and trip-based
travel demand model that follows the four-step transport modeling structure with (1) trip
generation, (2) trip distribution, (3) modal split, and (4) traffic assignment. As an input,
MITO requires a synthetic population that has been created using the land-use model
SILO [39] and represents an anonymized replication of census data [40]. Trips, generated
by the synthetic population’s activities, are assigned a transportation mode using a nested
logit mode choice model (see [3], Figure 1a for an illustration) which was estimated using
the household travel survey Mobilität in Deutschland [41]. MITO itself also uses an iter-
ative approach where MATSim’s traffic volumes affect the next iteration’s mode choice
decisions until an equilibrium state is achieved. The calibrated MUC scenario includes
trips towards five activity types home (42%), shop (9%), work (8%), education (3%), and
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other (38%); using four modes of transportation car (57%), walk (23%), bicycle (15%), and
public transport (PT) (5%). For comparability with the remaining scenarios, which use a
different set of modes, the listed modes have been mapped to a reduced set of modes (i.e.,
car, PT, walk, and bike) that is coherent over all three scenarios. A down-sampled share
of a synthetic population is used for analysis to reduce computation load. Thus, a 25%
population sample was used for MUC which includes 3.8 million trips.

1 
 

 

(a) Direct (i.e., Euclidean point-to-point) flight paths.

1 
 

 

(b) Indirect (i.e., infrastructure-based) flight routes.

Figure 1. Direct (a) and indirect (b) UAM flight routing on the example of MUC with 24 UAM stations.
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3.1.3. Île-de-France Scenario

Hörl and Balać [37] developed and calibrated an agent-based scenario for Île-de-France.
Their scenario was built using only publicly-accessible data from sources such as population
census, national and local household travel surveys, and tax registries to form a synthetic
population with activity plans; and general transit feed specification (GTFS) schedules
and OpenStreetMap to generate a multi-modal transport network. By using their self-
developed framework eqasim [42,43], which builds on MATSim’s functionality, but replaces
plan scoring with discrete mode-choice models [44,45], Hörl and Balać [37] obtained each
agent’s mobility choices by applying a multinomial logit model. The calibrated PAR
scenario includes trips towards six activity types’ home (41%), leisure (13%), work (13%),
errand (13%), shop (11%), and education (8%), using four distinct modes of transportation
walk (43%), car (33%), PT (22%), and bike (1%). For PAR, a 10% population sample was
used which includes 4.0 million trips with departure times, as using a 25% sample–as
with MUC–exceeded available computational resources. Despite the lower sample size
when compared to MUC, the sampled population of PAR provides more trips due to the
scenario’s high population density (cf. Table 1).

3.1.4. San Francisco Bay Area Scenario

Reapplying the methodology used for the Île-de-France scenario, Balać and Hörl [38]
also created an agent-based scenario for the nine-county San Francisco Bay Area. As with
the previous scenario, the SFO scenario was created using openly-available data sets like the
USA census estimates for 2017, the California household travel survey (CHTS) from 2012,
GTFS schedules of public transport operators, and OpenStreetMap data. A multinomial
logit mode-choice model was estimated based on the CHTS and paired with the mobility
simulation of MATSim, in the same way as for Île-de-France. The calibrated SFO scenario
includes trips towards six activity types home (35%), leisure (18%), work (13%), shop (10%),
education (4%), and other (20%), using three distinct modes of transportation car (74%),
walk (19%), and PT (7%). As with PAR and for the same reasons, a 10% population sample
was used for SFO which includes 2.5 million trips. To be used with the UAM-extension
though, each scenario requires some preparation, such as providing UAM station locations,
UAM vehicle properties, and UAM flight routes.

3.2. Scenario Preparation
3.2.1. Zoning

MATSim itself uses each trip’s precise origin and departure coordinates for calculating
travel times without the need for subdividing the study area into smaller zones. However,
such a reduction in spatial complexity greatly facilitates visualising and analysing study
areas and aides in placing UAM stations. Thus, rasterized layers have been created for each
of the three study areas, using a population-based incremental segmentation approach
inspired by Moeckel and Donnelly [46].

3.2.2. Station Placement

Arellano [16] presented the application of an impedance minimization location–
allocation algorithm for the automated placement of UAM stations for a given study
area, which has been adapted and applied for this study. Similar to that approach, the
location-allocation algorithm was used in iterations with an increasing number of desired
UAM stations, defined to be 4, 8, 24, 76, and 130. These UAM station numbers were chosen
to ensure comparability of this study with existing literature that assumed a relatively
low number of UAM stations (e.g., [17,19]) as well as studies with more numerous UAM
stations (e.g., [5,16]). In contrast to Arellano [16], who gathered expert judgement within a
Delphi process to create an artificial location suitability weight, this study uses each zone’s
aggregated, normalised, and densified number of motorized trip origins and destinations
as the single demand weight for station allocation.
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As potential UAM station locations, out of which the algorithm derives the pre-defined
number of stations that—in total—minimizes travel time impedance, evenly-spaced grid
points (see [16]) and manually-placed potential locations by local experts (see, e.g., [5,10])
have been combined, as illustrated by Figure 2a. These combined points serve as the
input for the station placement algorithm. For each study area, a local expert has been
asked to manually place between 50 and 150 potential UAM station locations based on
their knowledge of the area with regard to major transportation hubs (e.g., airports and
train stations), major points of interest (e.g., tourist attractions), and major commuter
destinations (e.g., company headquarters). The grid point spacings have then been set so
that the total number of potential station locations per study area does not exceed a given
software limit of 1000 points, resulting in a grid point spacing of 4 km for MUC and PAR,
and 5 km for SFO.

Figure 2b shows one result of the impedance minimizing location–allocation algorithm
for MUC with 24 stations. The translucent black lines connect all zones’ centroids (i.e.,
weighted demand points) to the algorithmically-selected, impedance-minimizing UAM
station locations (white). See Appendix A for illustrations of each scenario’s potential input
and selected output locations for 4, 24, and 130 UAM stations.

1 
 

 

(a) Potential locations via manual placement (black) and via a regular grid (white).

Figure 2. Cont.



Sustainability 2021, 13, 2217 8 of 20

1 
 

 

(b) Resulting 24 UAM station locations (white) for impedance minimization to each zone’s centroid.

Figure 2. Location–allocation input (a) and impedance minimization output (b) on the example
of MUC.

3.2.3. Flight Path Routing

Numerous UAM studies (e.g., [8,10,16]) assume Euclidean, i.e., straight-line, flight
distances in their analyses. To compensate for in-flight route deviation and for real-life
navigation of helicopters along existing ground infrastructure (cf. [11,47]), a few studies
have started to include static detour factors to all Euclidean flight distances (see, e.g., [5]).
However, using Euclidean connections (as exemplarily illustrated in Figure 1a) led to
“straight station-to-station routes that often traversed over population” ([16], p. 92). Vascik
and Hansman [11,48] examined possible UAM flight constraints for Los Angeles, CA, USA,
and identified overflight rules that UAM operation will probably have to adhere to.

In order to identify the impact of flight path routing and mimic urban, real-life, low-
altitude overflight—comparable to today’s helicopter operation—an exploratory ground-
infrastructure-based approach for flight route definition is proposed. Instead of connecting
all UAM stations via Euclidean flight paths, ground-based transport infrastructure is used
as a proxy for overflight, where larger infrastructure with high noise emissions and traffic
capacity is preferred for UAM overflight. For that, road and rail infrastructure data from
OpenStreetMap have been combined and categorized into three groups from high to low
capacity: (1) regional and high-speed rail, motorways, and primary roads, (2) secondary
and tertiary roads, and (3) all remaining road and rail infrastructure.

The combined ground-transport infrastructure layer was then used as the network
for automated path finding between all UAM station locations for each scenario and all
numbers of stations. The categorisation was the basis for defining an artificial path finding
cost parameter which replaces path length. Thus, instead of the shortest paths, the results
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are paths that predominately follow high-capacity road and rail infrastructure, as illustrated
in Figure 1b for MUC with 24 station locations. After initial tests with various category
weights (see [49]), a weight (i.e., cost) factor of three has been applied for this study.

3.3. Travel Time Calculation
3.3.1. Eligibility Criteria

Two subsequent conditions have been used to define whether or not a base scenario
trip is eligible for UAM usage. First, only motorized trips are considered as potentially
UAM-eligible. For non-motorized trips, i.e., walk or bike, UAM as a mode of transportation
is not assumed to be a viable substitution. This leaves 67% of trips in MUC, 59% in PAR, and
86% in SFO potentially eligible for UAM usage given this first condition of motorization.
However, the vast majority of those motorized trips are rather short. The median and 3rd
quartile of each scenario’s Euclidean motorized trip distances are 6 km and 10 km for MUC,
5 km and 10 km for PAR, and 6 km and 14 km for SFO—showing that only a few motorized
trips are long-range.

The second subsequent condition is based on the availability of UAM stations within
a dynamic search radius around a trip’s origin and destination. This dynamic search
radius for UAM stations has been derived from a study by (Pukhova [21], pp. 34–35)
where “the sum of the [Euclidean] distances to and from UAM stations should not be
longer than one third of the total trip length”, with the total trip length denoting the
trip’s Euclidean distance. This condition limits UAM use to trips where a significant part
of the trip would be served by UAM vehicles, i.e., flying. However, an initial analysis
showed that the constraint as presented by Pukhova [21] seems too restrictive. Thus, an
alternative implementation has been used in which the maximum-allowed access and
egress distances—each individually—may constitute up to one third of the total trip length.
Combined, the summed distance of a UAM trips’ access and egress legs can make up
two-thirds of the overall trip length within this study.

Figure 3 illustrates the shares of UAM-eligibility for motorized trips per scenario based
on the station accessibility conditions for various UAM station numbers. It is evident that
the share of UAM-eligible motorized trips heavily relies on the number and distribution
of UAM stations within the study area, with higher station numbers providing larger
UAM-eligibility shares. An additional analysis of the share of motorized trips that are
UAM-eligible over Euclidean distance showed another trend: longer trips (i.e., trips with
Euclidean distance of more than 50 km) experience higher shares of UAM-eligibility. Thus,
even though the overall shares of motorized trips that are UAM-eligible remain below 50%
for all scenarios, longer trips are generally included, which is important, since those trips
are expected to benefit most from the introduction of UAM.
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3.3.2. Traffic Congestion

For this study, traffic congestion affects each mode (i.e., car, PT, and UAM) in different
ways. For car travel times, previously-run MATSim simulations of each scenario provided
the base traffic- and congestion-levels, which were then taken into account for calculating
car travel times. Furthermore, MATSim’s car travel times do not include access/egress or
parking search times. Travel times using PT do include public transport station access and
egress walks, potential waiting times for transfers (e.g., when changing from bus to train),
and are primarily schedule-based. Travel times for UAM combine the workings of car and
PT, as both modes—as well as walking—are available for UAM station access/egress. Total
UAM trip times include access, flight, and egress legs, as well as static waiting, check-in,
boarding, and deboarding times. These passenger process times are summarized under
the terms pre- and post-flight processes. For each trip, the combination of two UAM
stations and access and egress modes that result in the shortest overall UAM trip time was
calculated as each trip’s potential UAM option.

Figure 4 illustrates the mean door-to-door car speed developments during the sim-
ulated day per scenario. Those speeds are derived by dividing the door-to-door trip
Euclidean distance by the trip’s total travel time and averaging them based on a 30 min
time window with regard to the trip’s departure time. The illustrated mean speeds for car
show distinct traffic peak times. For latter categorization of peak and off-peak trips, the
75th percentile of car mean speeds was used as a threshold per scenario, resulting in peak
times of 10:00 a.m.–11:30 a.m. and 3:00 p.m.–6:30 p.m. for MUC, 7:30 a.m.–9:30 a.m. and
4:30 p.m.–7:30 p.m. for PAR, and 7:30 a.m.–10:00 a.m. and 4:30 p.m.–7:00 p.m. for SFO.
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Figure 4. Car mean speeds per departure time of day in 30-min bins.

3.3.3. UAM Parameters and Base Case

Variations of four different UAM system parameters have been applied: (1) number
of UAM stations, (2) UAM vehicle cruise speed, (3) total processing time, and (4) type
of flight routes. As previously mentioned, the numbers of UAM stations were 4, 8, 24,
76, and 130 stations, distributed within each study area. Flight speeds have been varied
between 60 and 300 km/h in steps of 20 km/h based on a VTOL vehicle overview by
(Shamiyeh et al. [50], Table 1, p. 3). Per trip, a total of 120 s has been added to account for
take-off and landing of the UAM vehicle. In addition to the duration for VTOL operations,
total passenger process time variations were included with 0, 15, and 30 min. In order to
facilitate understanding, a distinct UAM base case has been defined. The base case aims
at representing a realistic—albeit optimistic—case for potential future on-demand UAM
operations with the following parameters:
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• UAM station count: 24 stations
• UAM vehicle cruise speed: 180 km/h
• UAM total process time: 15 min
• UAM VTOL duration: 120 s in total
• UAM flight routes: direct (i.e., Euclidean) flight paths

4. Results
4.1. Travel Time Savings Ratio

For comparing travel times between UAM and the trip’s respective original, ground-
based, motorized mode (i.e., car or PT), the following ratio of change in trip travel time is
being utilized (Equation (1)):

rtts = 1 − tuam

tgb
(1)

where the ratio of travel time savings (rtts) is the relative difference between a trip’s
respective ground-based travel time (tgb) and that trip’s potential UAM travel time (tuam)—
which comprises access, egress, flight, and process times. Positive travel time savings ratios
(rtts) do, thus, denote that the calculated UAM trip time is shorter than the original trip’s
travel time, whereas a negative ratio indicates that UAM would offer no travel time savings.

4.1.1. Motorized Trip Shares

Assuming UAM-usage given at least a minimal travel time savings (i.e., for rtts > 0),
UAM motorized trip shares for MUC, PAR, and SFO are 3%, 13%, and 7% under base-case
parameters. There is indication that these UAM’s motorized trip shares are largely drawn
from trips that originally were using public transport. For MUC, 49% of UAM trips were
originally PT trips (while PT makes up only 9% of motorized trips), 74% for PAR (PT
has a motorized trip share of 40%), and 40% for SFO (PT has a motorized trip share of
8%). UAM’s motorized trip share, given rtts > 0, however, varies greatly with changes in
UAM parameters. Figure 5a illustrates the motorized trip share development depending
on UAM’s assumed cruise flight speed and process time for 24 UAM stations. At the
base-case cruise flight speed of 180 km/h, a motorized trip share increase of 3 percentage
points (pp) for a decrease in process time from 30 to 15 min and, from there, an additional
11 pp increase for no process times can be observed for MUC. The same reductions in
process time lead to share increases of 6 pp and 11 pp for PAR and 2 pp and 6 pp for SFO at
base-case cruise speed.

Figure 5b, on the other hand, illustrates the motorized trip share development de-
pending on UAM’s assumed cruise flight speed and number of UAM stations. Again, at
base-case cruise flight speed, the respective motorized trip shares of UAM are 0.4%, 1%,
3%, 7%, and 9% for 4, 8, 24, 76, and 130 stations for MUC; 1%, 4%, 13%, 22%, and 26% for
PAR; and 0.6%, 1%, 7%, 12%, and 13% for SFO. Evidently, the share increase is largest when
increasing the number of stations from 8 to 24 and again from 24 to 76—an increase from
76 to 130 stations only leads to a marginal increase in motorized trip share. Figure 5a,b
also illustrate the impact of UAM cruise flight speed on trip shares. With 24 stations and
15 min process time (base case), UAM’s motorized trip share increases from 1% at 60 km/h
to 5% at 300 km/h for MUC, 8% and 14% for PAR, and 4% and 8% for SFO. The marginal
motorized trip shares for flight speed increases between 60 to 180 km/h are 1.8, 4.8, and
2.5 times higher than those from flight speed increases from 180 to 300 km/h for MUC,
PAR, and SFO, respectively.
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Figure 5. UAM motorized trip share for rtts > 0 over cruise flight speed.

A slight impact on flight distances can also be observed from the number of stations.
Figure 6 illustrates the median (50th), upper quartile (75th), and maximum (100th percentile)
Euclidean trip distances over station number for UAM (base case) usage given rtts > 0.
In general, for all three scenarios, the distributions of Euclidean trip distances per mode
are heavily skewed towards very short trips. The median trip distances for car and PT are
5–6 km, except for PT in SFO, which has a median trip distance of 10 km. Similarly, the
upper quartiles are between 9 and 13 km, which SFO’s upper PT quartile being 23 km. The
vast majority of motorized trips are, thus, relatively short. UAM’s median trip distances
are consistently higher, i.e., longer, than cars with 10, 11, and 27 km with 24 stations for
MUC, PAR, and SFO, respectively.
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Figure 6. Euclidean trip distance percentiles for car and UAM over number of UAM stations.

An increase in number of stations leads to a slight decrease of median trip distance for
MUC and PAR with a 19% and 14% drop when increasing the number of stations from 24
to 130. For SFO, a more substantial decrease of 46% can be observed. Most importantly,
however, is that even the upper quartile is comparatively short with 16, 18, and 38 km for
MUC, PAR, and SFO for 24 stations—indicating that the vast majority of potential UAM
trips would be far below 50 km.
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4.1.2. Sensitivity Analysis

As was already indicated by the change in motorized trip shares, the travel time
savings ratios themselves are highly dependent on and vary greatly with the underlying
UAM assumptions, such as the number of UAM stations or process time. Figure 7 illustrates
the distribution of UAM travel time savings ratios for UAM parameters (a) number of
UAM stations, (b) cruise speed, (c) process time, and (d) flight path routing and for non-
UAM parameters (e) trips’ original modes and (f) scenario. For each figure, base-case
assumptions were used except for the specified UAM parameter that is being varied for
Figure 7a–d. For readability, the graph’s ratio-axis has been set to only show values for
rtts > −2.
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Figure 7. Sensitivity of travel time savings ratio (rtts) to UAM parameters and scenario.

While more numerous UAM stations do significantly increase service coverage, as
can be seen from Figure 5b, the potential for travel time savings does not improve—as is
evident from Figure 7a. On the contrary, the median travel time saving slightly decreases.
For cruise speed, the median ratios increase by 0.35 between 80 km/h (MED = −0.37) and
300 km/h (MED = −0.02). More drastic is the impact of UAM process time with a 0.91-
increase in median travel time savings ratio from −0.54 with 30 min to 0.37 without process
time—even further, the spread of ratios is also significantly reduced. Whether UAM flight
paths are direct (station-to-station) or indirect (routed), paths makes a ratio difference of
0.06 when comparing their respective medians (MEDdirect = −0.10, MEDindirect = −0.16).
The median travel time savings ratio for UAM over PT trips is significantly higher than for
car trips, with median ratios of 0.32 and −0.30 for trips that originally were PT and car trips,
respectively. Finally, there is quite a difference in the distribution of travel time savings
ratios between the scenarios themselves (see Figure 7e). MUC has the lowest median ratio
with MED = −0.33. In-between MUC and PAR lies SFO with MED = −0.11; PAR has
highest median ratio with MED = 0.09.

4.2. Travel Speed Comparisons
4.2.1. Impact of UAM Operation Parameters

As seen from the time savings ratio’s sensitivity analysis (see Figure 7), the UAM
operation parameters, cruise flight speed and process time, have a significant impact on
travel time and, hence, travel speeds. Figure 8a illustrates the mean trip travel speeds over
Euclidean distance in 5 km-bins and shows the speed impact of different UAM cruise flight
speeds. Except for the described variations in cruise flight speed, base-case parameters are
set for UAM. At the base-case cruise speed of 180 km/h, UAM’s mean trip travel speed
surpasses that of car at 60, 35, and 40 km/h for MUC, PAR, and SFO. While each scenario’s
distance is slightly different, with their respective speeds, they all equate to a 50–55 min car
ride. Beyond these Euclidean trip distances, UAM is—on average—expected to provide at
least some travel time savings. When UAM’s cruise flight speed is reduced to 80 km/h,
however, UAM’ mean speeds do not clearly surpass those of cars but merely approach
them for PAR and SFO for distances larger than 100 km. Compared to PT speeds, however,
even an 80 km/h-cruise speed results in consistently higher mean speeds. A cruise flight



Sustainability 2021, 13, 2217 14 of 20

speed increase from 180 to 300 km/h leads to a reduction in intersection points between
car and UAM, with them being 35 (MUC), 25 (PAR), and 30 km (SFO).
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(a) Cruise flight speed variations.
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(b) Process time variations.
Figure 8. Mean trip speeds for car and UAM over Euclidean trip distance in 5 km-bins.

In contrast to the above, Figure 8b illustrates the change of mean speeds for variations
in assumed UAM process time. Most significant is the impact of reduced process times
for short-range trips. When decreasing the process times from 15 min (base case) to zero,
the mean UAM trip speeds start off and remain above those cars for all three scenarios.
For an increase of process times to a total of 30 min at a cruise flight speed of 180 km/h,
mean UAM trip speeds do not sufficiently surpass car speeds but begin being competitive
beyond 120, 80, and 70 km for MUC, PAR, and SFO.

4.2.2. Impact of Flight Path Routing and Congestion

As non-UAM operation parameters, flight path routing and congestion also affect
mean UAM trip speeds. For routed, i.e., indirect flight paths that follow ground-based
infrastructure as discussed in Section 3.2.3, a decrease in mean trip speeds is expected
due to prolonged flight distances while the trips’ Euclidean distances remain unchanged.
Overall, a mean speed reduction by 5% (MUC), 4% (PAR), and 7% (SFO) can be observed.
However, the mean speed reduction varies with different trip distances, as shown in
Figure 9. The impact of indirect flight paths increases proportionally with longer Euclidean
trip distances up to ca. 35 km, before starting to decrease with distances beyond ca. 100 km.
Notably, the impact of indirect paths over distance is more volatile for SFO than for MUC
or PAR. An auxiliary analysis showed that a very low number of long-range trips and
the scenario’s topography, i.e., the presence of a vast and central body of water, are two
primary factors for said volatility. Beyond 130 km, SFO only has one third the number of
trips when compared to MUC and, additionally, those trips are spread over a wider range
of distance bands.
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Figure 9. UAM (base case) trip speed impact of indirect, i.e., infrastructure-based, flight paths.

The overall impact of peak times, i.e., congestion, on mean UAM (base case) trip
speeds is a reduction by 4% (MUC), 5% (PAR), and 2% (SFO). For car, the equivalent mean
speed reductions are 9% for MUC and 14% for PAR and SFO. Thus, UAM is 51% (MUC),
63% (PAR), and 82% (SFO) less affected by ground-based traffic congestion compared to
cars. Figure 10 shows how the impact of ground-based congestion changes with variations
in stations’ numbers.
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Figure 10. UAM (base case) trip speed impact of congestion, i.e., peak time departure.

5. Discussion

The importance of the number and distribution of UAM stations, for UAM to be a
feasible alternative to ground-based transportation modes, can not be overstated. The
restriction, of trips being UAM-eligible only if the flight distance is at least one third of
the overall trip’s Euclidean distance, shows how few motorized trips actually have origins
and destinations within reasonable UAM station distances. Even with 130 stations being
distributed over the respective study areas, the share of UAM-eligible motorized trips
remains a slight minority, thus limiting UAM’s trip share regardless of UAM’s potential
travel times savings. Since UAM is assumed to be a station-based transportation system,
like public transport, UAM’s potential for travel time reduction hinges on the accessibility
of the system’s entry and exit points, i.e., UAM stations. This study’s observed UAM-
eligibility rates, which are leveling off at 40–45% for 130 UAM stations, seem comparable
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to the findings of Syed et al. [18] (see Section 2.2), who applied a stricter radius limitation,
but also placed more stations.

Higher station numbers substantially increased service coverage, yet did not sig-
nificantly reduce median travel times. Rather than shortening overall access and egress
distances, the number of very short-range trips grows. Even with base-case assump-
tions of 24 stations, most potential UAM trips have Euclidean distances of less than
50 km—confirming the results of Daskilewicz et al. [20]. Especially for those short-range
trips, the impact of process time duration heavily outweighs UAM’s cruise flight speeds.
The results from early simulations (c.f. [10]), in that potential future UAM operators should
focus on station placement and processes instead of vehicle speed, must be reaffirmed.
This can be linked with the finding that indirect flight paths (i.e., overlying ground-based
infrastructure) do not overly reduce UAM travel times. It seems fair to assume that, for
potential real-life UAM implementations, a regulatory requirement to circumvent certain
non-fly zones or to follow ground-based infrastructure for noise-avoidance and safety
reasons might be worth the trade-off with slightly-prolonged travel times.

On average, travel time savings are expected to be achieved beyond a 35–60 km range,
which stands in contrast to most UAM trips being very short-range. One could reasonably
argue, however, that UAM should not be encouraged as a transportation mode for such
short-range trips. With UAM vehicles’ take-off and landing operations being the most
energy-intensive flight phases, UAM’s questionable sustainability (c.f. [21]) would be
improved with longer trip distances. Disallowing UAM trips, with less than, say, 50 km
Euclidean distance, would reduce the motorized trip shares of UAM by more than 75%
(see Figure 6). It is important to note that the sustainability of a potential future UAM
realization very much depends on a multitude of factors, such as vehicle capacity, average
load factors, or the share of renewable energy production. Still, high base usage fees for
UAM might be an economic measure to reduce unsustainable short-range flights.

Since potential UAM service prices and costs are still very much speculation, pricing
has purposefully not been included within this study. Thus, the reported motorized trip
shares present the maximum possible shares, with the inclusion of pricing substantially
reducing UAM’s trip shares—given that UAM is expected to be a more costly service than
private car or PT usage. Especially when discussing UAM as a potential alternative for
trips that originally were done using PT, it is fair to question whether such substitution can
be assumed or—more importantly—desired. In light of making transport more sustainable
and decreasing social inequality, reducing the trip share of PT for a more individualistic
mode of transportation is wholly unwanted—despite UAM potentially offering shared
services at some point in the future. Assuming that PT substitution would not occur, either
due to economic or regulatory measures, the reported motorized trip shares for UAM
would decrease by 40–79%.

6. Limitations and Future Research

This study primarily analyzes travel times savings without the inclusion of pricing.
Combining various stated-preference surveys—especially the emerging study for San
Francisco Bay Area by Garrow et al. [51]—with the presented information could enable
more detailed insight into potential UAM demand. Furthermore, more localized analyses
of the study areas’ ground infrastructure and topography might lead to particular flight
connections that prove to be useful despite being, e.g., short-range.

With UAM station selection being such a central influence on its coverage and trip
shares, it is a topic worth its own analysis in the lines of Chakour and Eluru [52], whose
approach specifically addresses the issue of different sequences in passengers’ decisions for
departure stations in whether the access mode or station precedes. Additionally, required
UAM infrastructure throughput, potential for passenger pooling, public acceptance, and
sustainability of UAM operations also warrant further investigation.
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7. Conclusions

Urban air mobility, understood as short-range on-demand aerial passenger transport,
is expected to provide a novel, time-saving mode of transportation. Except for potential
future UAM realizations with vast numbers of UAM station, however, the majority of
motorized trips are UAM-ineligible due to prolonged access and egress trips. Thus, the
number and distribution of stations are key to achieving wide-spread UAM service cover-
age. Under base-case assumptions, UAM could provide travel time savings for 3–13% of
motorized trips. Due to the necessity of accessing/egressing UAM stations, ground-based
congestion does affect UAM travel times–compared to cars, however, UAM travel times
are 51–82% less affected. UAM (base case) is estimated to provide time savings beyond
respective distances of a 50–55 min car ride.

While UAM is not believed to be suitable for mass transport, based on the derived trip
shares, the underlying technologies could provide valuable alternatives to conventional he-
licopters that are in use for emergency, touristic, or occasional passenger transport services.
However, UAM might be a suitable addition to existing transportation systems in areas
with, for example, ground terrain that causes large detours for ground-based transportation.
For UAM manufacturers or intended UAM service providers, it is recommended to focus
on UAM stations’ accessibility and distribution, rather than maximizing UAM vehicle
cruise flight speed.
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Figure A1. Location–allocation impedance minimization outputs for 4, 24, and 130 UAM stations for MUC, PAR, and SFO.
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